高等数学
编辑于 2021 /12/21 14.01
李鹤年
图片若有侵权,请联系删除
知识连接:
(1)曲面积分 - 涉及偏导知识
(2)化二重积分 - 涉及二重积分的计算方法
(3)高斯公式 - 涉及三重积分的计算方法
第一类曲面积分
定义部分:
1.本质:求曲面的近似面积
2.公式:∫∫f(x,y,z)dS (当这个ds足够小的时候,其带入对应函数值也可以近似为其映射曲面的面积)
(注:若f(x,y,z)表示面密度,则积分结果代表质量
3.性质:
(1)1做积分函数,结果代表曲面的面积∫ds = s
计算方法:
(1)直接化成二重积分:
投影面不能成线(如下面第二题不能选xoy)
在这里插入图片描述
公式理解:
从曲面积分到二重积分,变的有两点,一是代换,二是加偏导
代换: 因为我是在曲面上分析计算的,而曲面是满足这个等式关系的,所以能替换很合理
补偏导:其实就是曲线积分的推广,求曲线,ds =根号(dx^2 + dy ^2),到了三维,就是多补一个dz
(一个不严谨的推导,仅用于记忆)
注意点:
(1)选择一个好的投影面(就是看谁偏导好求)
(2)积分区域是投影的那个面(不是原来的曲面)
(3)记得补偏导
(2)利用对称性:
记忆方法:
投哪个面,就看剩下一个面的奇偶性
什么时候用得上:
(1)一些一眼看过去很复杂的积分(往往是奇函数得0)
(2)一些对称了,但没有完全对称的函数,不如分母都有xy,分子只有x(用轮换,如下只有一个|y|)

解法:
解法一:
理解:
因为这里是dxdy而不是ds,所以不需要偏导(重要)
在这里插入图片描述
解法二:
(对应题目类型,一般有一个不知道的f(x,y,z),算一下会被消去)
上面不能用高斯公式(因为连续不一定可导)
解法三(高斯公式)
本质:曲面积分到三重积分的桥梁(使用三重积分的方法去解)
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ZqlSoIdN-1640066600424)(C:\Users\鹤年\AppData\Roaming\Typora\typora-user-images\image-20211221135505721.png)]
记忆:满足条件的情况下,dv可以看成dxdydz,然后乘进去就等于左侧了
使用时易错点:
(1)补面之后记得减
(2)不连续的地方得删除