Part A 第一类曲面积分 (对面积的曲面积分)
1 定义
∬ Σ f ( x , y , z ) d S = lim λ → 0 ∑ i = 1 n f ( ξ i , η i , ζ i ) Δ S i \iint\limits_\Sigma f(x,y,z)\text{d}S=\lim_{\lambda\to 0}\sum\limits_{i=1}^nf(\xi_i,\eta_i,\zeta_i)\Delta S_i Σ∬f(x,y,z)dS=λ→0limi=1∑nf(ξi,ηi,ζi)ΔSi
注意:
(1)
Σ
\Sigma\,
Σ被称为积分曲面,
d
S
\text{d}S\,
dS称为面微分.
(2)
∬
Σ
f
(
x
,
y
,
z
)
d
S
\iint\limits_\Sigma f(x,y,z)\text{d}S\,
Σ∬f(x,y,z)dS与
Σ
\,\Sigma\,
Σ的划分及点的取法无关.
(3) 若
f
(
x
,
y
,
z
)
\,f(x,y,z)\,
f(x,y,z)在光滑曲面
Σ
\,\Sigma\,
Σ上连续,则
∬
Σ
f
(
x
,
y
,
z
)
d
S
\,\iint\limits_\Sigma f(x,y,z)\text{d}S\,
Σ∬f(x,y,z)dS一定存在.
(4) 如果
Σ
\,\Sigma\,
Σ是闭曲面,曲面积分记为:
∯
Σ
f
(
x
,
y
,
z
)
d
S
\oiint\limits_\Sigma f(x,y,z)\text{d}S
Σ∬f(x,y,z)dS
(5) 定积分、重积分和第一类曲线曲面积分是一脉相承的,都有着相似的性质和处理思路.
2 性质
(1) 基本性质
∬ Σ [ a f ( x , y , z ) ± b g ( x , y , z ) ] d S = a ∬ Σ f ( x , y , z ) d S + b ∬ Σ g ( x , y , z ) d S \iint\limits_\Sigma[af(x,y,z)\pm bg(x,y,z)]\text{d}S=a\iint\limits_\Sigma f(x,y,z)\text{d}S+b\iint\limits_\Sigma g(x,y,z)\text{d}S Σ∬[af(x,y,z)±bg(x,y,z)]dS=aΣ∬f(x,y,z)dS+bΣ∬g(x,y,z)dS ∬ Σ 1 + Σ 2 f ( x , y , z ) d S = ∬ Σ 1 f ( x , y , z ) d S + ∬ Σ 2 f ( x , y , z ) d S ( Σ = Σ 1 + Σ 2 ) \iint\limits_{\Sigma_1+\Sigma_2} f(x,y,z)\text{d}S=\iint\limits_{\Sigma_1} f(x,y,z)\text{d}S+\iint\limits_{\Sigma_2} f(x,y,z)\text{d}S\;\;(\Sigma=\Sigma_1+\Sigma_2) Σ1+Σ2∬f(x,y,z)dS=Σ1∬f(x,y,z)dS+Σ2∬f(x,y,z)dS(Σ=Σ1+Σ2) ∬ Σ d S = A ( A 为 曲 面 的 面 积 ) \iint\limits_\Sigma\text{d}S=A\;\;(A\,为曲面的面积) Σ∬dS=A(A为曲面的面积)
(2) 对称奇偶性质
(1) 设曲面
Σ
\,\Sigma\,
Σ关于
y
O
z
\,yOz\,
yOz平面对称,其中
Σ
1
\,\Sigma_1\,
Σ1是其位于
y
O
z
\,yOz\,
yOz平面前侧的部分,则:
∬
Σ
f
(
x
,
y
,
z
)
d
S
=
{
0
,
f
(
−
x
,
y
,
z
)
=
−
f
(
x
,
y
,
z
)
,
2
∬
Σ
1
f
(
x
,
y
,
z
)
d
S
,
f
(
−
x
,
y
,
z
)
=
f
(
x
,
y
,
z
)
.
\iint\limits_\Sigma f(x,y,z)\text{d}S=\begin{cases}0,&f(-x,y,z)=-f(x,y,z),\\ 2\iint\limits_{\Sigma_1}f(x,y,z)\text{d}S,&f(-x,y,z)=f(x,y,z).\end{cases}
Σ∬f(x,y,z)dS=⎩⎨⎧0,2Σ1∬f(x,y,z)dS,f(−x,y,z)=−f(x,y,z),f(−x,y,z)=f(x,y,z).
(2) 设曲面
Σ
\,\Sigma\,
Σ关于
z
O
x
\,zOx\,
zOx平面对称,其中
Σ
1
\,\Sigma_1\,
Σ1是其位于
x
O
y
\,xOy\,
xOy平面右侧的部分,则:
∬
Σ
f
(
x
,
y
,
z
)
d
S
=
{
0
,
f
(
x
,
−
y
,
z
)
=
−
f
(
x
,
y
,
z
)
,
2
∬
Σ
1
f
(
x
,
y
,
z
)
d
S
,
f
(
x
,
−
y
,
z
)
=
f
(
x
,
y
,
z
)
.
\iint\limits_\Sigma f(x,y,z)\text{d}S=\begin{cases}0,&f(x,-y,z)=-f(x,y,z),\\ 2\iint\limits_{\Sigma_1}f(x,y,z)\text{d}S,&f(x,-y,z)=f(x,y,z).\end{cases}
Σ∬f(x,y,z)dS=⎩⎨⎧0,2Σ1∬f(x,y,z)dS,f(x,−y,z)=−f(x,y,z),f(x,−y,z)=f(x,y,z).
(3) 设曲面
Σ
\,\Sigma\,
Σ关于
x
O
y
\,xOy\,
xOy平面对称,其中
Σ
1
\,\Sigma_1\,
Σ1是其位于
x
O
y
\,xOy\,
xOy平面上方的部分,则:
∬
Σ
f
(
x
,
y
,
z
)
d
S
=
{
0
,
f
(
x
,
y
,
−
z
)
=
−
f
(
x
,
y
,
z
)
,
2
∬
Σ
1
f
(
x
,
y
,
z
)
d
S
,
f
(
x
,
y
,
−
z
)
=
f
(
x
,
y
,
z
)
.
\iint\limits_\Sigma f(x,y,z)\text{d}S=\begin{cases}0,&f(x,y,-z)=-f(x,y,z),\\ 2\iint\limits_{\Sigma_1}f(x,y,z)\text{d}S,&f(x,y,-z)=f(x,y,z).\end{cases}
Σ∬f(x,y,z)dS=⎩⎨⎧0,2Σ1∬f(x,y,z)dS,f(x,y,−z)=−f(x,y,z),f(x,y,−z)=f(x,y,z).
(4) 轮换对称性:若曲面符合轮换对称性,则
∬
Σ
f
(
x
,
y
,
z
)
d
S
=
∬
Σ
f
(
y
,
z
,
x
)
d
S
=
∬
Σ
f
(
z
,
x
,
y
)
d
S
\iint\limits_\Sigma f(x,y,z)\text{d}S=\iint\limits_\Sigma f(y,z,x)\text{d}S= \iint\limits_\Sigma f(z,x,y)\text{d}S
Σ∬f(x,y,z)dS=Σ∬f(y,z,x)dS=Σ∬f(z,x,y)dS
轮换是指保持
x
\,x
x、
y
y
y、
z
z\,
z坐标轴相对顺序不变的交换.
本质上是由于按照这种规则重新命名坐标轴,
Σ
\,\Sigma\,
Σ不变.
更一般地,若交换
x
\,x
x、
y
y
y、
z
z\,
z三者中任意两个 (比如交换
x
\,x\,
x和
y
\,y
y),
Σ
\,\Sigma\,
Σ不变,则
Σ
\,\Sigma\,
Σ还满足下面这样的关系:
∬
Σ
f
(
x
,
y
,
z
)
d
S
=
∬
Σ
f
(
y
,
x
,
z
)
d
S
\iint\limits_\Sigma f(x,y,z)\text{d}S=\iint\limits_\Sigma f(y,x,z)\text{d}S
Σ∬f(x,y,z)dS=Σ∬f(y,x,z)dS
例. 设曲面 Σ : ∣ x ∣ + ∣ y ∣ + ∣ z ∣ = 1 \,\Sigma:|x|+|y|+|z|=1 Σ:∣x∣+∣y∣+∣z∣=1,求:
I = ∯ Σ ( x + ∣ y ∣ ) d S \,I=\oiint\limits_\Sigma(x+|y|)\text{d}S I=Σ∬(x+∣y∣)dS解:由对称性 (曲面关于 z O y \,zOy\, zOy面对称), I = ∯ Σ ∣ y ∣ d S I=\oiint\limits_{\Sigma}|y|\text{d}S I=Σ∬∣y∣dS,
由轮换对称性, I = 1 3 ∯ Σ ( ∣ x ∣ + ∣ y ∣ + ∣ z ∣ ) d S = 1 3 ∯ Σ d S I=\frac{1}{3}\oiint\limits_{\Sigma}(|x|+|y|+|z|)\text{d}S=\frac{1}{3}\oiint\limits_{\Sigma}\text{d}S I=31Σ∬(∣x∣+∣y∣+∣z∣)dS=31Σ∬dS,
曲面八个面大小相同, I = 8 3 ∯ Σ d S = 8 3 S Δ = 8 3 ⋅ 3 2 = 4 3 3 I=\frac{8}{3}\oiint\limits_{\Sigma}\text{d}S=\frac{8}{3}S_\Delta=\frac{8}{3}\cdot \frac{\sqrt{3}}{2}=\frac{4}{3}\sqrt{3} I=38Σ∬dS=38SΔ=38⋅23=343.
3 计算方法
(一) 替代法
若被积函数中含曲面的表达式,则可以整体替代.
原因:和曲线积分一样,曲面积分的积分区域是一个严格成立的等式 (重积分的积分区域是一个不等式,所以不能直接代入),无论被积函数中的自变量如何组合,自变量都满足这个等式,所以可以直接替代.
例. 计算 ∬ Σ ( x + y + z ) 2 d S \,\iint\limits_\Sigma{(x+y+z)}^2\text{d}S Σ∬(x+y+z)2dS,其中 Σ : z = 4 − x 2 − y 2 \,\Sigma:z=\sqrt{4-x^2-y^2} Σ:z=4−x2−y2:
∬ Σ ( x + y + z ) 2 d S = ∬ Σ ( x 2 + y 2 + z 2 ) d S = ∬ Σ 4 dS = 4 ⋅ 8 π = 32 π . \iint\limits_\Sigma(x+y+z)^2\text{d}S=\iint\limits_\Sigma({\color{Blue}x^2+y^2+z^2})\text{d}S=\iint\limits_\Sigma{\color{Blue}4}\text{dS}=4\cdot8\pi=32\pi. Σ∬(x+y+z)2dS=Σ∬(x2+y2+z2)dS=Σ∬4dS=4⋅8π=32π.
对于下面这种轮换对称性与替代法的结合使用应该非常熟练:
Σ
:
x
2
+
y
2
+
z
2
=
a
2
,
∬
Σ
(
x
2
+
4
y
2
+
9
z
2
)
d
S
=
14
3
a
2
∬
Σ
d
S
=
14
3
a
2
⋅
4
π
a
2
\Sigma:x^2+y^2+z^2=a^2,\iint\limits_\Sigma(x^2+4y^2+9z^2)\text{d}S=\frac{14}{3}a^2\iint\limits_\Sigma\text{d}S=\frac{14}{3}a^2\cdot 4\pi a^2
Σ:x2+y2+z2=a2,Σ∬(x2+4y2+9z2)dS=314a2Σ∬dS=314a2⋅4πa2
(二) 二重积分法
(1) 投影到 x O y \,xOy\, xOy面:
设 Σ : z = φ ( x , y ) ( ( x , y ) ∈ D x y ) \,\Sigma:z=\varphi(x,y)\,\big((x,y)\in D_{xy}\big) Σ:z=φ(x,y)((x,y)∈Dxy), D x y D_{xy}\, Dxy为 Σ \,\Sigma\, Σ在 x O y \,xOy\, xOy面上的投影区域.
d S = 1 + z x ′ 2 + z y ′ 2 d x d y \color{Purple}\text{d}S=\sqrt{1+z_x'^2+z'^2_y}\text{d}x\text{d}y dS=1+zx′2+zy′2dxdy I = ∬ D x y f [ x , y , φ ( x , y ) ] ⋅ d S = ∬ D x y f [ x , y , φ ( x , y ) ] ⋅ 1 + z x ′ 2 + z y ′ 2 d x d y I=\iint\limits_{D_{xy}}f[x,y,\varphi(x,y)]\cdot\text{d}S=\iint\limits_{D_{xy}}f[x,y,\varphi(x,y)]\cdot\sqrt{1+z_x'^2+z'^2_y}\text{d}x\text{d}y I=Dxy∬f[x,y,φ(x,y)]⋅dS=Dxy∬f[x,y,φ(x,y)]⋅1+zx′2+zy′2dxdy
(2) 投影到 y O z \,yOz\, yOz面:
设 Σ : x = φ ( y , z ) ( ( y , z ) ∈ D y z ) \,\Sigma:x=\varphi(y,z)\,\big((y,z)\in D_{yz}\big) Σ:x=φ(y,z)((y,z)∈Dyz), D y z D_{yz}\, Dyz为 Σ \,\Sigma\, Σ在 y O z \,yOz\, yOz面上的投影区域.
d S = 1 + x y ′ 2 + x z ′ 2 d y d z \color{Purple}\text{d}S=\sqrt{1+x_y'^2+x'^2_z}\text{d}y\text{d}z dS=1+xy′2+xz′2dydz I = ∬ D y z f [ φ ( y , z ) , y , z ] ⋅ d S = ∬ D y z f [ φ ( y , z ) , y , z ] ⋅ 1 + x y ′ 2 + x z ′ 2 d y d z I=\iint\limits_{D_{yz}}f[\varphi(y,z),y,z]\cdot\text{d}S=\iint\limits_{D_{yz}}f[\varphi(y,z),y,z]\cdot\sqrt{1+x_y'^2+x'^2_z}\text{d}y\text{d}z I=Dyz∬f[φ(y,z),y,z]⋅dS=Dyz∬f[φ(y,z),y,z]⋅1+xy′2+xz′2dydz
(3) 投影到 z O x \,zOx\, zOx面:
设 Σ : y = φ ( x , z ) ( ( x , z ) ∈ D x z ) \,\Sigma:y=\varphi(x,z)\,\big((x,z)\in D_{xz}\big) Σ:y=φ(x,z)((x,z)∈Dxz), D x z D_{xz}\, Dxz为 Σ \,\Sigma\, Σ在 z O x \,zOx\, zOx面上的投影区域.
d S = 1 + y x ′ 2 + y z ′ 2 d z d x \color{Purple}\text{d}S=\sqrt{1+y_x'^2+y'^2_z}\text{d}z\text{d}x dS=1+yx′2+yz′2dzdx I = ∬ D x z f [ x , φ ( x , z ) , z ] ⋅ d S = ∬ D x z f [ x , φ ( x , z ) , z ] ⋅ 1 + y x ′ 2 + y z ′ 2 d z d x I=\iint\limits_{D_{xz}}f[x,\varphi(x,z),z]\cdot\text{d}S=\iint\limits_{D_{xz}}f[x,\varphi(x,z),z]\cdot\sqrt{1+y_x'^2+y'^2_z}\text{d}z\text{d}x I=Dxz∬f[x,φ(x,z),z]⋅dS=Dxz∬f[x,φ(x,z),z]⋅1+yx′2+yz′2dzdx
注意:有的题目 Σ \,\Sigma\, Σ方程表示可能为隐函数,需要两边求导或列方程解出偏导数.
4 几何应用
(1) 面积 (光滑曲面薄片)
光滑曲面薄片
Σ
:
z
=
z
(
x
,
y
)
\,\Sigma:z=z(x,y)\,
Σ:z=z(x,y)的面积为:
A
=
∬
D
x
y
d
S
=
∬
D
x
y
1
+
z
x
′
2
+
z
y
′
2
d
x
d
y
\color{Blue}A=\iint\limits_{D_{xy}}\text{d}S=\iint\limits_{D_{xy}}\sqrt{1+z_x'^2+z_y'^2}\text{d}x\text{d}y
A=Dxy∬dS=Dxy∬1+zx′2+zy′2dxdy
常见图形的面积公式:
圆: A = π r 2 \color{Blue}A=\pi r^2 A=πr2 ( r r\, r为半径);
椭圆: A = π ⋅ a ⋅ b \color{Blue}A=\pi\cdot a\cdot b A=π⋅a⋅b ( a a a、 b b\, b为椭圆的长短半轴长);
扇形: A = 1 2 ⋅ r ⋅ l \color{Blue}A=\frac{1}{2}\cdot r\cdot l A=21⋅r⋅l ( r r\, r为半径, l l\, l为弧长);
矩形: A = a ⋅ b \color{Blue}A=a\cdot b A=a⋅b ( a a a、 b b\, b为矩形边长);
平行四边形: A = a ⋅ h \color{Blue}A=a\cdot h A=a⋅h ( h h\, h为平行四边形的高);
菱形: A = a ⋅ b 2 \color{Blue}A=\frac{a\cdot b}{2} A=2a⋅b ( a a a、 b b\, b为菱形的对角线);
梯形: A = ( a + b ) ⋅ h 2 \color{Blue}A=\frac{(a+b)\cdot h}{2} A=2(a+b)⋅h ( a a a、 b b\, b为梯形的上下底长, h h\, h为梯形的高);
任意三角形: A = a ⋅ h 2 \color{Blue}A=\frac{a\cdot h}{2} A=2a⋅h ( a a\, a为三角形的底边长、 h h\, h为三角形的高);
任意三角形 (海伦公式): A = p ( p − a ) ( p − b ) ( p − c ) \color{Blue}A=\sqrt{p(p-a)(p-b)(p-c)} A=p(p−a)(p−b)(p−c), p = a + b + c 2 \color{Blue}p=\frac{a+b+c}{2} p=2a+b+c ( a a a、 b b b、 c c\, c为三角形的边长);
等边三角形: A = 3 4 a 2 \color{Blue}A=\frac{\sqrt{3}}{4}a^2 A=43a2 ( a a\, a为三角形边长).
(2) 形心坐标 (光滑曲面薄片)
形心:几何形体的中心.
光滑曲面薄片 Σ \,\Sigma\, Σ的形心坐标 ( x ˉ , y ˉ ) \,\color{Purple}(\bar{x},\bar{y})\, (xˉ,yˉ)计算公式:
x ˉ = ∬ Σ x d S ∬ Σ d S = 1 A ∬ Σ x d S \bar{x}=\frac{\iint\limits_\Sigma{\color{Blue}x}\text{d}S}{\iint\limits_\Sigma\text{d}S}=\frac{1}{A}\iint\limits_\Sigma{\color{Blue}x}\text{d}S xˉ=Σ∬dSΣ∬xdS=A1Σ∬xdS y ˉ = ∬ Σ y d S ∬ Σ d S = 1 A ∬ Σ y d S \bar{y}=\frac{\iint\limits_\Sigma{\color{Blue}y}\text{d}S}{\iint\limits_\Sigma\text{d}S}=\frac{1}{A}\iint\limits_\Sigma{\color{Blue}y}\text{d}S yˉ=Σ∬dSΣ∬ydS=A1Σ∬ydS z ˉ = ∬ Σ z d S ∬ Σ d S = 1 A ∬ Σ z d S \bar{z}=\frac{\iint\limits_\Sigma{\color{Blue}z}\text{d}S}{\iint\limits_\Sigma\text{d}S}=\frac{1}{A}\iint\limits_\Sigma{\color{Blue}z}\text{d}S zˉ=Σ∬dSΣ∬zdS=A1Σ∬zdS
其中: A A\, A为曲面的表面积.
形心公式逆用:
∬
Σ
x
d
S
=
x
ˉ
⋅
∬
Σ
d
S
=
x
ˉ
⋅
A
\iint\limits_\Sigma{\color{Blue}x}\text{d}S=\bar{x}\cdot \iint\limits_\Sigma\text{d}S=\bar{x}\cdot A
Σ∬xdS=xˉ⋅Σ∬dS=xˉ⋅A
∬
Σ
y
d
S
=
y
ˉ
⋅
∬
Σ
d
S
=
y
ˉ
⋅
A
\iint\limits_\Sigma{\color{Blue}y}\text{d}S=\bar{y}\cdot \iint\limits_\Sigma\text{d}S=\bar{y}\cdot A
Σ∬ydS=yˉ⋅Σ∬dS=yˉ⋅A
∬
Σ
z
d
S
=
z
ˉ
⋅
∬
Σ
d
S
=
z
ˉ
⋅
A
\iint\limits_\Sigma{\color{Blue}z}\text{d}S=\bar{z}\cdot \iint\limits_\Sigma\text{d}S=\bar{z}\cdot A
Σ∬zdS=zˉ⋅Σ∬dS=zˉ⋅A
在计算第一类曲面积分时,遇到 ∬ Σ x d S \,\iint\limits_\Sigma{\color{Blue}x}\text{d}S Σ∬xdS、 ∬ Σ y d S \iint\limits_\Sigma{\color{Blue}y}\text{d}S Σ∬ydS、 ∬ Σ z d S \iint\limits_\Sigma{\color{Blue}z}\text{d}S Σ∬zdS,并且图形规则(可以直接看出形心)、曲面表面积易于确定时,应立即想到形心公式的逆用. 通过逆用形心公式,可以避免计算面微分、确定积分限,大大简化计算.
5 物理应用
(1) 质量 (光滑曲面薄片)
若
ρ
(
x
,
y
,
z
)
\,\rho(x,y,z)\,
ρ(x,y,z)为光滑曲面薄片
Σ
\,\Sigma\,
Σ的面密度,则薄片质量为:
m
=
∬
Σ
ρ
(
x
,
y
,
z
)
d
S
\color{Blue}m=\iint\limits_\Sigma\rho(x,y,z)\text{d}S
m=Σ∬ρ(x,y,z)dS
(2) 质心/重心坐标 (光滑曲面薄片)
质心:质量的中心.
光滑曲面薄片 Σ \,\Sigma\, Σ的质心坐标 ( x ˉ , y ˉ ) \,\color{Purple}(\bar{x},\bar{y})\, (xˉ,yˉ)计算公式:
设光滑曲面薄片 Σ \,\Sigma\, Σ的面密度为 ρ ( x , y ) \,\color{Purple}\rho(x,y) ρ(x,y),则薄片的质心坐标为: x ˉ = ∬ Σ x ⋅ ρ ( x , y , z ) d S ∬ Σ ρ ( x , y , z ) d S \bar{x}=\frac{\iint\limits_\Sigma{\color{Blue}x}\cdot{\color{Purple}\rho(x,y,z)}\text{d}S}{\iint\limits_\Sigma{\color{Purple}\rho(x,y,z)}\text{d}S} xˉ=Σ∬ρ(x,y,z)dSΣ∬x⋅ρ(x,y,z)dS y ˉ = ∬ Σ y ⋅ ρ ( x , y , z ) d S ∬ Σ ρ ( x , y , z ) d S \bar{y}=\frac{\iint\limits_\Sigma{\color{Blue}y\cdot{\color{Purple}\rho(x,y,z)}}\text{d}S}{\iint\limits_\Sigma{\color{Purple}\rho(x,y,z)}\text{d}S} yˉ=Σ∬ρ(x,y,z)dSΣ∬y⋅ρ(x,y,z)dS z ˉ = ∬ Σ z ⋅ ρ ( x , y , z ) d S ∬ Σ ρ ( x , y , z ) d S \bar{z}=\frac{\iint\limits_\Sigma{\color{Blue}z\cdot{\color{Purple}\rho(x,y,z)}}\text{d}S}{\iint\limits_\Sigma{\color{Purple}\rho(x,y,z)}\text{d}S} zˉ=Σ∬ρ(x,y,z)dSΣ∬z⋅ρ(x,y,z)dS
注意:
(1) 从形式上看,质心公式只是在形心公式分子分母的曲面积分内部多乘了一个
ρ
\,\color{Purple}\rho
ρ.
(2) 当薄片密度分布均匀(即
ρ
\,\rho\,
ρ为常数)时,质心与形心重合.
(3) 重心:重心是重力平衡的重心,质心和重心是重合的.
(3) 转动惯量 (光滑曲面薄片)
若 ρ ( x , y , z ) \,\rho(x,y,z)\, ρ(x,y,z)为光滑曲面薄片 Σ \,\Sigma\, Σ的面密度,则其转动惯量计算公式为:
Σ
\,\Sigma\,
Σ绕
x
\,x\,
x轴的转动惯量为:
I
x
=
∬
Σ
(
y
2
+
z
2
)
⋅
ρ
(
x
,
y
,
z
)
d
S
{\color{Green}I_x}=\iint\limits_\Sigma{\color{Blue}(y^2+z^2)}\cdot{\color{Purple}\rho(x,y,z)}\text{d}S
Ix=Σ∬(y2+z2)⋅ρ(x,y,z)dS
Σ
\,\Sigma\,
Σ绕
y
\,y\,
y轴的转动惯量为:
I
y
=
∬
Σ
(
x
2
+
z
2
)
⋅
ρ
(
x
,
y
,
z
)
d
S
{\color{Green}I_y}=\iint\limits_\Sigma{\color{Blue}(x^2+z^2)}\cdot{\color{Purple}\rho(x,y,z)}\text{d}S
Iy=Σ∬(x2+z2)⋅ρ(x,y,z)dS
Σ
\,\Sigma\,
Σ绕原点的转动惯量为:
I
O
=
∬
Σ
(
x
2
+
y
2
+
z
2
)
⋅
ρ
(
x
,
y
,
z
)
d
S
{\color{Green}I_O}=\iint\limits_\Sigma{\color{Blue}(x^2+y^2+z^2)}\cdot{\color{Purple}\rho(x,y,z)}\text{d}S
IO=Σ∬(x2+y2+z2)⋅ρ(x,y,z)dS
一般情况:
设
M
(
x
,
y
,
z
)
\,M(x,y,z)\,
M(x,y,z)是
Σ
\,\Sigma\,
Σ上的一点,
l
l\,
l为一条直线,
M
\,M\,
M到直线
l
\,l\,
l的距离为
d
\,d
d,则
Σ
\,\Sigma\,
Σ绕
l
\,l\,
l的转动惯量为:
I
l
=
∬
Σ
d
2
⋅
ρ
(
x
,
y
,
z
)
d
S
{\color{Green}I_l}=\iint\limits_\Sigma{\color{Blue}d^2}\cdot{\color{Purple}\rho(x,y,z)}\text{d}S
Il=Σ∬d2⋅ρ(x,y,z)dS
(4) 引力 (光滑曲面薄片)
若光滑曲面薄片 Σ \,\Sigma\, Σ的面密度为 ρ ( x , y , z ) \,\rho(x,y,z) ρ(x,y,z),则曲面对点 M ( x 0 , y 0 , z 0 ) \,M(x_0,y_0,z_0)\, M(x0,y0,z0)处质量为 m \,m\, m的质点引力 ( F x , F y , F z ) \,\color{Purple}(F_x,F_y,F_z)\, (Fx,Fy,Fz)的计算公式为: F x = G m ∬ Σ ρ ( x , y , z ) ( x − x 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + z 0 2 ] 3 2 d S {\color{Green}F_x}=Gm\iint\limits_\Sigma\frac{{\color{Purple}\rho(x,y,z)}{\color{Blue}(x-x_0)}}{[(x-x_0)^2+(y-y_0)^2+z_0^2]^{\frac{3}{2}}}\text{d}S Fx=GmΣ∬[(x−x0)2+(y−y0)2+z02]23ρ(x,y,z)(x−x0)dS F y = G m ∬ Σ ρ ( x , y , z ) ( y − y 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + z 0 2 ] 3 2 d S {\color{Green}F_y}=Gm\iint\limits_\Sigma\frac{{\color{Purple}\rho(x,y,z)}{\color{Blue}(y-y_0)}}{[(x-x_0)^2+(y-y_0)^2+z_0^2]^{\frac{3}{2}}}\text{d}S Fy=GmΣ∬[(x−x0)2+(y−y0)2+z02]23ρ(x,y,z)(y−y0)dS F z = G m ∬ Σ ρ ( x , y , z ) ( z − z 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + z 0 2 ] 3 2 d S {\color{Green}F_z}=Gm\iint\limits_\Sigma\frac{{\color{Purple}\rho(x,y,z)}{\color{Blue}(z-z_0)}}{[(x-x_0)^2+(y-y_0)^2+z_0^2]^{\frac{3}{2}}}\text{d}S Fz=GmΣ∬[(x−x0)2+(y−y0)2+z02]23ρ(x,y,z)(z−z0)dS
G G\, G为引力常量.
Part B 第二类曲面积分 (对坐标的曲面积分)
1 定义
(1) 函数
P
(
x
,
y
,
z
)
\,P(x,y,z)\,
P(x,y,z)在有向曲面
Σ
\,\Sigma\,
Σ上对坐标
y
\,y
y、
z
z\,
z的曲面积分 (第二类曲面积分):
∬
Σ
P
(
x
,
y
,
z
)
d
y
d
z
=
lim
λ
→
0
∑
i
=
1
n
P
(
ξ
i
,
η
i
,
ζ
i
)
(
Δ
S
i
)
y
z
\iint\limits_{\Sigma}P(x,y,z)\text{d}y\text{d}z=\lim\limits_{\lambda\to0}\sum\limits^n_{i=1}P(\xi_i,\eta_i,\zeta_i)(\Delta S_i)_{yz}
Σ∬P(x,y,z)dydz=λ→0limi=1∑nP(ξi,ηi,ζi)(ΔSi)yz
(2) 函数
Q
(
x
,
y
,
z
)
\,Q(x,y,z)\,
Q(x,y,z)在有向曲面
Σ
\,\Sigma\,
Σ上对坐标
x
\,x
x、
z
z\,
z的曲面积分 (第二类曲面积分):
∬
Σ
Q
(
x
,
y
,
z
)
d
z
d
x
=
lim
λ
→
0
∑
i
=
1
n
Q
(
ξ
i
,
η
i
,
ζ
i
)
(
Δ
S
i
)
z
x
\iint\limits_{\Sigma}Q(x,y,z)\text{d}z\text{d}x=\lim\limits_{\lambda\to0}\sum\limits^n_{i=1}Q(\xi_i,\eta_i,\zeta_i)(\Delta S_i)_{zx}
Σ∬Q(x,y,z)dzdx=λ→0limi=1∑nQ(ξi,ηi,ζi)(ΔSi)zx
(3) 函数
R
(
x
,
y
,
z
)
\,R(x,y,z)\,
R(x,y,z)在有向曲面
Σ
\,\Sigma\,
Σ上对坐标
x
\,x
x、
y
y\,
y的曲面积分 (第二类曲面积分):
∬
Σ
R
(
x
,
y
,
z
)
d
x
d
y
=
lim
λ
→
0
∑
i
=
1
n
R
(
ξ
i
,
η
i
,
ζ
i
)
(
Δ
S
i
)
x
y
\iint\limits_{\Sigma}R(x,y,z)\text{d}x\text{d}y=\lim\limits_{\lambda\to0}\sum\limits^n_{i=1}R(\xi_i,\eta_i,\zeta_i)(\Delta S_i)_{xy}
Σ∬R(x,y,z)dxdy=λ→0limi=1∑nR(ξi,ηi,ζi)(ΔSi)xy
(4) 简记:
∬
Σ
P
d
y
d
z
+
∬
Σ
Q
d
z
d
x
+
∬
Σ
R
d
x
d
y
=
∬
Σ
P
d
y
d
z
+
Q
d
z
d
x
+
R
d
x
d
y
\iint\limits_{\Sigma}P\text{d}y\text{d}z+\iint\limits_{\Sigma}Q\text{d}z\text{d}x+\iint\limits_{\Sigma}R\text{d}x\text{d}y=\color{Purple}\iint\limits_{\Sigma}P\text{d}y\text{d}z+Q\text{d}z\text{d}x+R\text{d}x\text{d}y
Σ∬Pdydz+Σ∬Qdzdx+Σ∬Rdxdy=Σ∬Pdydz+Qdzdx+Rdxdy
(5) 向量形式:
∬
Σ
F
⃗
⋅
d
S
⃗
=
∬
Σ
F
⃗
⋅
n
0
⃗
d
S
\color{Purple}\iint\limits_\Sigma \vec{F}\cdot\text{d}\vec{S}=\iint\limits_\Sigma\vec{F}\cdot\vec{n^0}\text{d}S
Σ∬F⋅dS=Σ∬F⋅n0dS 其中,
F
⃗
=
P
⋅
i
⃗
+
Q
⋅
j
⃗
+
R
⋅
k
⃗
\vec{F}=P\cdot\vec{i}+Q\cdot\vec{j}+R\cdot\vec{k}
F=P⋅i+Q⋅j+R⋅k,
d
S
⃗
=
d
y
d
z
⋅
i
⃗
+
d
z
d
x
⋅
j
⃗
+
d
x
d
y
⋅
k
⃗
\text{d}\vec{S}=\text{d}y\text{d}z\cdot \vec{i}+\text{d}z\text{d}x\cdot \vec{j}+\text{d}x\text{d}y\cdot \vec{k}
dS=dydz⋅i+dzdx⋅j+dxdy⋅k,
n
0
⃗
\vec{n_0}\,
n0代表有向曲面
Σ
\,\Sigma\,
Σ在指定侧的单位法向量.
注意:
(1)
Σ
\Sigma\,
Σ被称为积分曲面,
d
S
⃗
\text{d}\vec{S}\,
dS被称为面微分向量.
(2) 曲面积分与
Σ
\,\Sigma\,
Σ的划分及点的取法无关.
(3) 若
P
\,P
P、
Q
Q
Q、
R
R\,
R在光滑曲面
Σ
\,\Sigma\,
Σ上连续,则曲面积分一定存在.
(4) 流向
Σ
\,\Sigma\,
Σ指定侧的流量
Φ
\,\Phi\,
Φ为:
Φ
=
∬
Σ
P
(
x
,
y
,
z
)
d
y
d
z
+
Q
(
x
,
y
,
z
)
d
z
d
x
+
R
(
x
,
y
,
z
)
d
x
d
y
\Phi=\iint\limits_{\Sigma}P(x,y,z)\text{d}y\text{d}z+Q(x,y,z)\text{d}z\text{d}x+R(x,y,z)\text{d}x\text{d}y
Φ=Σ∬P(x,y,z)dydz+Q(x,y,z)dzdx+R(x,y,z)dxdy (5) 快速判断投影方向:
d
y
d
z
\text{d}y\text{d}z
dydz:观察者在
x
\,x\,
x轴正半轴观察曲面,若曲面方向指向观察者,投影为正,若曲面方向背向观察者,投影为负;
d
z
d
x
\text{d}z\text{d}x
dzdx:观察者在
y
\,y\,
y轴正半轴观察曲面,若曲面方向指向观察者,投影为正,若曲面方向背向观察者,投影为负;
d
x
d
y
\text{d}x\text{d}y
dxdy:观察者在
z
\,z\,
z轴正半轴观察曲面,若曲面方向指向观察者,投影为正,若曲面方向背向观察者,投影为负.
2 性质
(1) 简单性质
∬ Σ − P ( x , y , z ) d y d z + Q ( x , y , z ) d z d x + R ( x , y , z ) d x d y = − ∬ Σ P ( x , y , z ) d y d z + Q ( x , y , z ) d z d x + R ( x , y , z ) d x d y \iint\limits_{\Sigma^-}P(x,y,z)\text{d}y\text{d}z+Q(x,y,z)\text{d}z\text{d}x+R(x,y,z)\text{d}x\text{d}y=-\iint\limits_{\Sigma}P(x,y,z)\text{d}y\text{d}z+Q(x,y,z)\text{d}z\text{d}x+R(x,y,z)\text{d}x\text{d}y Σ−∬P(x,y,z)dydz+Q(x,y,z)dzdx+R(x,y,z)dxdy=−Σ∬P(x,y,z)dydz+Q(x,y,z)dzdx+R(x,y,z)dxdy ∬ Σ P d y d z + Q d z d x + R d x d y = ∬ Σ 1 P d y d z + Q d z d x + R d x d y + ∬ Σ 2 P d y d z + Q d z d x + R d x d y ( Σ = Σ 1 + Σ 2 ) \iint\limits_{\Sigma}P\text{d}y\text{d}z+Q\text{d}z\text{d}x+R\text{d}x\text{d}y=\iint\limits_{\Sigma_1}P\text{d}y\text{d}z+Q\text{d}z\text{d}x+R\text{d}x\text{d}y+\iint\limits_{\Sigma_2}P\text{d}y\text{d}z+Q\text{d}z\text{d}x+R\text{d}x\text{d}y\;\;(\Sigma=\Sigma_1+\Sigma_2) Σ∬Pdydz+Qdzdx+Rdxdy=Σ1∬Pdydz+Qdzdx+Rdxdy+Σ2∬Pdydz+Qdzdx+Rdxdy(Σ=Σ1+Σ2)
(2) 对称奇偶性
下面只列举一种情况:
以下对称性需要特别熟练,使用非常频繁:
(1) 曲面关于
y
O
z
\,yOz\,
yOz面对称,且前后两侧曲面方向相反,
Σ
1
\,\Sigma_1\,
Σ1是其位于
y
O
z
\,yOz\,
yOz平面前侧的部分,对于
∬
Σ
P
(
x
,
y
,
z
)
d
y
d
z
\iint\limits_{\Sigma}P(x,y,z)\text{d}y\text{d}z
Σ∬P(x,y,z)dydz 若
P
(
x
,
y
,
z
)
\,P(x,y,z)\,
P(x,y,z)是
x
\,x\,
x的偶函数 (或不含
x
\,x
x),则该积分为
0
\,0
0;
若
P
(
x
,
y
,
z
)
\,P(x,y,z)\,
P(x,y,z)是
x
\,x\,
x的奇函数,则该积分为
2
∬
Σ
1
P
(
x
,
y
,
z
)
d
y
d
z
\,2\iint\limits_{\Sigma_1}P(x,y,z)\text{d}y\text{d}z
2Σ1∬P(x,y,z)dydz;
(2) 曲面关于
z
O
x
\,zOx\,
zOx面对称,且左右两侧曲面方向相反,
Σ
1
\,\Sigma_1\,
Σ1是其位于
z
O
x
\,zOx\,
zOx平面右侧的部分,对于
∬
Σ
Q
(
x
,
y
,
z
)
d
z
d
x
\iint\limits_{\Sigma}Q(x,y,z)\text{d}z\text{d}x
Σ∬Q(x,y,z)dzdx 若
Q
(
x
,
y
,
z
)
\,Q(x,y,z)\,
Q(x,y,z)是
y
\,y\,
y的偶函数 (或不含
y
\,y
y),则该积分为
0
\,0
0;
若
Q
(
x
,
y
,
z
)
\,Q(x,y,z)\,
Q(x,y,z)是
y
\,y\,
y的奇函数,则该积分为
2
∬
Σ
1
Q
(
x
,
y
,
z
)
d
z
d
x
\,2\iint\limits_{\Sigma_1}Q(x,y,z)\text{d}z\text{d}x
2Σ1∬Q(x,y,z)dzdx;
(3) 曲面关于
x
O
y
\,xOy\,
xOy面对称,且上下两侧曲面方向相反,
Σ
1
\,\Sigma_1\,
Σ1是其位于
x
O
y
\,xOy\,
xOy平面上侧的部分,对于
∬
Σ
R
(
x
,
y
,
z
)
d
x
d
y
\iint\limits_{\Sigma}R(x,y,z)\text{d}x\text{d}y
Σ∬R(x,y,z)dxdy 若
R
(
x
,
y
,
z
)
\,R(x,y,z)\,
R(x,y,z)是
z
\,z\,
z的偶函数 (或不含
z
\,z
z),则该积分为
0
\,0
0;
若
R
(
x
,
y
,
z
)
\,R(x,y,z)\,
R(x,y,z)是
z
\,z\,
z的奇函数,则该积分为
2
∬
Σ
1
R
(
x
,
y
,
z
)
d
x
d
y
\,2\iint\limits_{\Sigma_1}R(x,y,z)\text{d}x\text{d}y
2Σ1∬R(x,y,z)dxdy.
例: I = ∬ Σ ( x + 3 z 2 ) d y d z + ( x 3 z 2 + y z ) d z d x − 3 y 2 d x d y I=\iint\limits_{\Sigma}(x+3z^2)\text{d}y\text{d}z+(x^3z^2+yz)\text{d}z\text{d}x-3y^2\text{d}x\text{d}y I=Σ∬(x+3z2)dydz+(x3z2+yz)dzdx−3y2dxdy, Σ : z = 2 − x 2 + y 2 \Sigma:z=2-\sqrt{x^2+y^2} Σ:z=2−x2+y2.
显然 Σ \,\Sigma\, Σ是同时关于 y O z \,yOz\, yOz面和 z O x \,zOx\, zOx面对称的圆锥面,利用上面的对称性就可以直接简化积分式为:
I = ∬ Σ x d y d z + y z d z d x − 3 y 2 d x d y I=\iint\limits_{\Sigma}x\text{d}y\text{d}z+yz\text{d}z\text{d}x-3y^2\text{d}x\text{d}y I=Σ∬xdydz+yzdzdx−3y2dxdy
可以总结出下面的规律:
去掉偶数项,
对于 d y d z \,\text{d}y\text{d}z dydz,关注变量 x \,x x, x x\, x次数为偶数的项去掉 ( 3 z 2 3z^2 3z2), x x\, x次数为奇数的项保留 ( x x x).
对于 d z d x \,\text{d}z\text{d}x dzdx,关注变量 y \,y y, y y\, y次数为偶数的项去掉 ( x 3 z 2 x^3z^2 x3z2), y y\, y次数为奇数的项保留 ( y z yz yz).
对于 d x d y \,\text{d}x\text{d}y dxdy,由于不具有对称性,不作处理.
(3) 两类曲面积分之间的关系
∬ Σ P d y d z + Q d z d x + R d x d y = ∬ Σ ( P cos α + Q cos β + R cos γ ) d S \color{Purple}\iint\limits_{\Sigma}P\text{d}y\text{d}z+Q\text{d}z\text{d}x+R\text{d}x\text{d}y=\iint\limits_{\Sigma}(P\text{cos}\alpha+Q\text{cos}\beta+R\text{cos}\gamma)\text{d}S Σ∬Pdydz+Qdzdx+Rdxdy=Σ∬(Pcosα+Qcosβ+Rcosγ)dS
其中 cos α \,\text{cos}\alpha cosα, cos β \text{cos}\beta\, cosβ, cos γ \text{cos}\gamma\, cosγ为有向曲面 Σ \,\Sigma\, Σ上一点处法向量的方向余弦.
注意:利用法向量求方向余弦时一定要注意法向量的方向.
若 P \,P P、 Q Q Q、 R R\, R中出现方向余弦和 d S \,\text{d}S dS,就要转换为第二类曲面积分计算.
3 计算方法与思路
(一) 二重积分法
将三个方向的曲面积分拆开计算.
(1) 设
Σ
:
x
=
φ
(
y
,
z
)
\,\Sigma:x=\varphi(y,z)
Σ:x=φ(y,z),计算
∬
Σ
P
(
x
,
y
,
z
)
d
y
d
z
\,\iint\limits_{\Sigma}P(x,y,z)\text{d}y\text{d}z
Σ∬P(x,y,z)dydz:
∬
Σ
P
(
x
,
y
,
z
)
d
y
d
z
=
±
∬
D
y
z
P
[
φ
(
y
,
z
)
,
y
,
z
]
d
y
d
z
\iint\limits_{\Sigma}P(x,y,z)\text{d}y\text{d}z=\pm\iint\limits_{D_{yz}}P[\varphi(y,z),y,z]\text{d}y\text{d}z
Σ∬P(x,y,z)dydz=±Dyz∬P[φ(y,z),y,z]dydz 其中
D
y
z
\,D_{yz}\,
Dyz为曲面在
y
O
z
\,yOz\,
yOz平面上的投影区域.
注意正负:若曲面上一点法向量与
x
\,x\,
x轴夹角为锐角,符号为
“
+
”
\,“+”\,
“+”,若为钝角,符号为
“
−
”
\,“-”\,
“−”.
(2) 设
Σ
:
y
=
φ
(
x
,
z
)
\,\Sigma:y=\varphi(x,z)
Σ:y=φ(x,z),计算
∬
Σ
Q
(
x
,
y
,
z
)
d
z
d
x
\,\iint\limits_{\Sigma}Q(x,y,z)\text{d}z\text{d}x
Σ∬Q(x,y,z)dzdx:
∬
Σ
Q
(
x
,
y
,
z
)
d
z
d
x
=
±
∬
D
x
z
P
[
x
,
φ
(
x
,
z
)
,
z
]
d
z
d
x
\iint\limits_{\Sigma}Q(x,y,z)\text{d}z\text{d}x=\pm\iint\limits_{D_{xz}}P[x,\varphi(x,z),z]\text{d}z\text{d}x
Σ∬Q(x,y,z)dzdx=±Dxz∬P[x,φ(x,z),z]dzdx 其中
D
x
z
\,D_{xz}\,
Dxz为曲面在
z
O
x
\,zOx\,
zOx平面上的投影区域.
注意正负:若曲面上一点法向量与
y
\,y\,
y轴夹角为锐角,符号为
“
+
”
\,“+”\,
“+”,若为钝角,符号为
“
−
”
\,“-”\,
“−”.
(3) 设
Σ
:
z
=
φ
(
x
,
y
)
\,\Sigma:z=\varphi(x,y)
Σ:z=φ(x,y),计算
∬
Σ
R
(
x
,
y
,
z
)
d
x
d
y
\,\iint\limits_{\Sigma}R(x,y,z)\text{d}x\text{d}y
Σ∬R(x,y,z)dxdy:
∬
Σ
R
(
x
,
y
,
z
)
d
z
d
x
=
±
∬
D
x
y
R
[
x
,
y
,
φ
(
x
,
y
)
]
d
x
d
y
\iint\limits_{\Sigma}R(x,y,z)\text{d}z\text{d}x=\pm\iint\limits_{D_{xy}}R[x,y,\varphi(x,y)]\text{d}x\text{d}y
Σ∬R(x,y,z)dzdx=±Dxy∬R[x,y,φ(x,y)]dxdy 其中
D
x
y
\,D_{xy}\,
Dxy为曲面在
x
O
y
\,xOy\,
xOy平面上的投影区域.
注意正负:若曲面上一点法向量与
z
\,z\,
z轴夹角为锐角,符号为
“
+
”
\,“+”\,
“+”,若为钝角,符号为
“
−
”
\,“-”\,
“−”.
注意:等式两侧积分元素虽然形式上相同,但含义不同,以 d x d y \,\text{d}x\text{d}y\, dxdy为例:
左侧第二类曲面积分的 d x d y \,\text{d}x\text{d}y\, dxdy代表曲面元素在 x O y \,xOy\, xOy面的投影,其值可正可负;
右侧二重积分的 d x d y \,\text{d}x\text{d}y\, dxdy代表面积元素,其值必定为正.
(二) 转换投影法
使用场景:若曲面投影到某个面会出现重叠或不好计算,可以考虑使用转换投影法,将曲面积分投影到另一个相对好算的面进行计算.
比如抛物面 z = x 2 + y 2 \,z=x^2+y^2\, z=x2+y2的侧面使用二重积分法投影到 z O x \,zOx\, zOx面和 y O z \,yOz\, yOz面就不太好计算,可以考虑都转换投影到 x O y \,xOy\, xOy平面 (投影域是一个圆),相对要好计算很多.
方法:
下面以转换投影到
x
O
y
\,xOy\,
xOy平面为例.
step 1:先确定曲面法向量,求出方向余弦.
step 2:由
d
x
d
y
=
cos
γ
d
S
\,\text{d}x\text{d}y=\text{cos}\gamma\text{d}S
dxdy=cosγdS,按照下面的方法完成转换:
d y d z = cos α d S = cos α cos γ cos γ d S = cos α cos γ d x d y \text{d}y\text{d}z=\text{cos}\alpha\text{d}S=\frac{\text{cos}\alpha}{\text{cos}\gamma}\text{cos}\gamma\text{d}S=\frac{\text{cos}\alpha}{\text{cos}\gamma}\text{d}x\text{d}y dydz=cosαdS=cosγcosαcosγdS=cosγcosαdxdy d z d x = cos β d S = cos β cos γ cos γ d S = cos β cos γ d x d y \text{d}z\text{d}x=\text{cos}\beta\text{d}S=\frac{\text{cos}\beta}{\text{cos}\gamma}\text{cos}\gamma\text{d}S=\frac{\text{cos}\beta}{\text{cos}\gamma}\text{d}x\text{d}y dzdx=cosβdS=cosγcosβcosγdS=cosγcosβdxdy
读者务必要记住曲面投影元素与方向余弦的对应关系!
(三) 转换为第一类曲面积分
使用场景:若曲面积分出现抽象函数 f ( x , y , z ) \,f(x,y,z) f(x,y,z),使用 Gauss \,\text{Gauss}\, Gauss也消不掉. 一定要考虑第一类曲面积分!
方法:
step 1:先由
F
=
f
(
x
,
y
,
z
)
\,F=f(x,y,z)
F=f(x,y,z),计算方向余弦.
step 2:根据下面的公式完成转换:
∬ Σ P d y d z + Q d z d x + R d x d y = ∬ Σ ( P cos α + Q cos β + R cos γ ) d S \iint\limits_{\Sigma}P\text{d}y\text{d}z+Q\text{d}z\text{d}x+R\text{d}x\text{d}y=\iint\limits_{\Sigma}(P\text{cos}\alpha+Q\text{cos}\beta+R\text{cos}\gamma)\text{d}S Σ∬Pdydz+Qdzdx+Rdxdy=Σ∬(Pcosα+Qcosβ+Rcosγ)dS
(四) 高斯公式 ( Gauss \text{Gauss} Gauss)
定理
Th
.
(
Green
)
\text{Th}.(\text{Green})
Th.(Green) 设空间有界闭区域
Ω
\,\Omega\,
Ω,
Σ
\,\Sigma\,
Σ为
Ω
\,\Omega\,
Ω的外侧光滑闭曲面.
P
(
x
,
y
,
z
)
P(x,y,z)
P(x,y,z),
Q
(
x
,
y
,
z
)
Q(x,y,z)\,
Q(x,y,z),
R
(
x
,
y
,
z
)
R(x,y,z)\,
R(x,y,z)在
Ω
\,\Omega\,
Ω上一阶连续可偏导,则有
∯
Σ
P
d
y
d
z
+
Q
d
z
d
x
+
R
d
x
d
y
=
∭
Ω
(
∂
P
∂
x
+
∂
Q
∂
y
+
∂
R
∂
z
)
d
v
\oiint\limits_{\Sigma}P\text{d}y\text{d}z+Q\text{d}z\text{d}x+R\text{d}x\text{d}y=\iiint\limits_\Omega\bigg(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\bigg)\text{d}v
Σ∬Pdydz+Qdzdx+Rdxdy=Ω∭(∂x∂P+∂y∂Q+∂z∂R)dv
Gauss \text{Gauss}\, Gauss的条件
(1) Σ \Sigma\, Σ是封闭曲面:
若 Σ \,\Sigma\, Σ不封闭,则需要通过补面法使之封闭,再使用 Gauss \,\text{Gauss} Gauss.
(2) Σ \Sigma\, Σ是外侧曲面:
即
Σ
\,\Sigma\,
Σ的单位法向量都指向区域外侧,若
Σ
\,\Sigma\,
Σ为
Ω
\,\Omega\,
Ω的内侧曲面,则
∯
Σ
P
d
y
d
z
+
Q
d
z
d
x
+
R
d
x
d
y
=
−
∭
Ω
(
∂
P
∂
x
+
∂
Q
∂
y
+
∂
R
∂
z
)
d
v
\oiint\limits_{\Sigma}P\text{d}y\text{d}z+Q\text{d}z\text{d}x+R\text{d}x\text{d}y={\color{Red}\bm-}\iiint\limits_\Omega\bigg(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\bigg)\text{d}v
Σ∬Pdydz+Qdzdx+Rdxdy=−Ω∭(∂x∂P+∂y∂Q+∂z∂R)dv
(3) 一阶连续可偏导:
必须保证 P \,P P、 Q Q Q、 R R\, R在 Ω \,\Omega\, Ω上具有一阶连续偏导数才能使用 Gauss \,\text{Gauss} Gauss. 若区域内存在不连续的点(称为奇点),则要使用挖洞法进行计算.
(五) 沿任意闭曲面的曲面积分为零的条件
Th
.
\text{Th}.
Th. 设
G
\,G\,
G为空间二维单连通区域,函数
P
(
x
,
y
,
z
)
\,P(x,y,z)
P(x,y,z),
Q
(
x
,
y
,
z
)
Q(x,y,z)
Q(x,y,z),
R
(
x
,
y
,
z
)
R(x,y,z)\,
R(x,y,z)在
G
\,G\,
G内具有一阶连续偏导数,则曲面积分:
∬
Σ
P
d
y
d
z
+
Q
d
z
d
x
+
R
d
x
d
y
\iint\limits_{\Sigma}P\text{d}y\text{d}z+Q\text{d}z\text{d}x+R\text{d}x\text{d}y
Σ∬Pdydz+Qdzdx+Rdxdy
在 G \,G\, G内与所取曲面 Σ \,\Sigma\, Σ无关而只取决于 Σ \,\Sigma\, Σ的边界曲面(或沿 G \,G\, G内任一闭曲面的曲面积分为零) 的充要条件是:
∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z = 0 \frac{\partial{P}}{\partial{x}}+\frac{\partial{Q}}{\partial{y}}+\frac{\partial{R}}{\partial{z}}=0 ∂x∂P+∂y∂Q+∂z∂R=0
在 G \,G\, G内恒成立.
(六) 计算思路总结
步骤:
step 1:绘制曲面.
step 2:检查被积函数是否可以使用对称奇偶性、替代法,简化积分式.
step 3:识别题目类型
(1) 曲面不封闭:
若曲面很好计算,直接使用二重积分法或转换投影法求解;
若曲面不好计算:
令
P
=
.
.
.
\,P=...
P=...、
Q
=
.
.
.
Q=...
Q=...,
R
=
.
.
.
R=...
R=...,并求偏导数.
若
∂
Q
∂
x
+
∂
P
∂
y
+
∂
P
∂
y
=
0
\,\frac{\partial{Q}}{\partial{x}}+\frac{\partial{P}}{\partial{y}}+\frac{\partial{P}}{\partial{y}}=0
∂x∂Q+∂y∂P+∂y∂P=0,换简单曲面计算.
若
∂
Q
∂
x
+
∂
P
∂
y
+
∂
P
∂
y
≠
0
\,\frac{\partial{Q}}{\partial{x}}+\frac{\partial{P}}{\partial{y}}+\frac{\partial{P}}{\partial{y}}\neq0
∂x∂Q+∂y∂P+∂y∂P=0,补面计算.
(2) 曲面封闭:
令
P
=
.
.
.
\,P=...
P=...、
Q
=
.
.
.
Q=...
Q=...,
R
=
.
.
.
R=...
R=...,并求偏导数.
若曲面所围区域内无奇点 ,直接使用
Gauss
\,\text{Gauss}\,
Gauss计算;
若曲面所围区域内有奇点,挖洞法换曲面计算.
注意:
(1)
P
\,P
P、
Q
Q
Q、
R
R\,
R中含有抽象函数
f
(
x
)
\,f(x)\,
f(x),通常在使用
Gauss
\,\text{Gauss}\,
Gauss的过程中被抵消掉.
(2) 若曲面积分出现
f
(
x
,
y
,
z
)
\,f(x,y,z)
f(x,y,z),有两种思路:a. 使用转换投影法 (投影到一个面) 计算;b. 转换为第一类曲面积分.
4 第二类曲面积分做法总结
(一) 曲面封闭且无奇点
特征:题目给的曲面是闭曲面,并且没有分母 (考试奇点通常只会出在分母上).
思路:直接使用
Gauss
\,\text{Gauss}
Gauss.
(二) 曲面封闭但内部有奇点
特征:题目给的曲面是闭曲面,分母可能为
0
\,0\,
0(奇点). 题目通常还满足除奇点外:
div
F
⃗
=
0
(
即
∂
P
∂
x
=
∂
Q
∂
y
=
∂
R
∂
z
)
\color{Blue}\text{div}\,\vec{F}=0\;\;(即\,\frac{\partial P}{\partial x}=\frac{\partial Q}{\partial y}=\frac{\partial R}{\partial z})
divF=0(即∂x∂P=∂y∂Q=∂z∂R)
思路:挖洞法换个面积分,再使用 Gauss \,\text{Gauss} Gauss.
挖洞法 ("挖去" Ω \,\Omega\, Ω中的奇点,再使用 Gauss \,\text{Gauss} Gauss) 具体做法如下:
1 o 1^o\; 1o作闭曲面 Σ 0 \,\Sigma_0 Σ0, Σ 0 \Sigma_0\, Σ0必须保证在 Σ \,\Sigma\, Σ内,且方向与 Σ \,\Sigma\, Σ同向.
2
o
2^o\;
2o于是有:
∯
Σ
=
∯
Σ
+
Σ
0
−
+
∯
Σ
0
\oiint\limits_\Sigma={\color{Blue}\oiint\limits_{\Sigma+\Sigma_0^-}}+{\color{Red}\oiint\limits_{\Sigma_0}}
Σ∬=Σ+Σ0−∬+Σ0∬
3 o 3^o\; 3o ∯ Σ + Σ 0 − {\color{Blue}\oiint\limits_{\Sigma+\Sigma_0^-}}\, Σ+Σ0−∬在 Σ \,\Sigma\, Σ与 Σ 0 \,\Sigma_0\, Σ0所围积分区域 Ω 1 \,\Omega_1\, Ω1内使用 Gauss \,\text{Gauss}\, Gauss求解.
如果题目满足 div F ⃗ = 0 \,\color{Blue}\text{div}\,\vec{F}=0 divF=0,则 ∯ Σ + Σ 0 − = 0 {\color{Blue}\oiint\limits_{\Sigma+\Sigma_0^-}=0} Σ+Σ0−∬=0 所以: ∯ Σ = ∯ Σ 0 \oiint\limits_\Sigma={\color{Red}\oiint\limits_{\Sigma_0}} Σ∬=Σ0∬ 于是计算 Σ \,\Sigma\, Σ的曲面积分,就转换为计算 Σ 0 \,\Sigma_0\, Σ0的曲面积分,所以说是换曲面.
4 o 4^o\; 4o ∯ Σ 0 {\color{Red}\oiint\limits_{\Sigma_0}}\, Σ0∬使用 Gauss \,\text{Gauss}\, Gauss或定积分法求解.
说明:
(1) 一般出题奇点出在分母上(
(
0
,
0
)
\,(0,0)\,
(0,0)点使分式没有意义),比如:
∯
Σ
x
d
y
d
z
+
y
d
z
d
x
+
z
d
x
d
y
(
x
2
+
y
2
+
z
2
)
3
2
\oiint\limits_\Sigma\frac{x\text{d}y\text{d}z+y\text{d}z\text{d}x+z\text{d}x\text{d}y}{(x^2+y^2+z^2)^{\frac{3}{2}}}
Σ∬(x2+y2+z2)23xdydz+ydzdx+zdxdy (2) 如果不能确定奇点是否在
Ω
\,\Omega\,
Ω内,就要作如下的分类讨论:
O
(
0
,
0
,
0
)
∉
Ω
\,O(0,0,0)\notin \Omega\,
O(0,0,0)∈/Ω,放心使用
Gauss
\,\text{Gauss}\,
Gauss求解.
O
(
0
,
0
,
0
)
∈
Ω
\,O(0,0,0)\in \Omega\,
O(0,0,0)∈Ω,使用挖洞法换曲面求.
(3) 为了方便后面使用替代法简化计算,
Σ
0
\Sigma_0\,
Σ0的选取应该参照分母,并且方向与外侧曲面一致(纯粹是为了计算方便).
比如上面 (1) 中的曲面积分的
Σ
0
\,\Sigma_0\,
Σ0就应该设为:
Σ
0
:
x
2
+
y
2
+
z
2
=
r
2
(
r
>
0
,
Σ
0
\Sigma_0:x^2+y^2+z^2=r^2\;(r>0,\Sigma_0\,
Σ0:x2+y2+z2=r2(r>0,Σ0在
Σ
\,\Sigma\,
Σ内且取外侧),
这样在计算
∯
Σ
0
\,\oiint\limits_{\Sigma_0}\,
Σ0∬时分母就能直接替换为
r
2
\,r^2
r2
下面以一个例题演示计算过程.
例:计算 ∯ Σ x d y d z + y d z d x + z d x d y ( x 2 + y 2 + z 2 ) 3 2 \oiint\limits_\Sigma\frac{x\text{d}y\text{d}z+y\text{d}z\text{d}x+z\text{d}x\text{d}y}{(x^2+y^2+z^2)^{\frac{3}{2}}} Σ∬(x2+y2+z2)23xdydz+ydzdx+zdxdy,其中 Σ : x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \,\Sigma:\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 Σ:a2x2+b2y2+c2z2=1,法向量指向外侧.
解:
1 o 1^o\; 1o找出 P \,P P、 Q Q Q、 R R R,并确定它们的偏导数之和为 0 \,0 0:
∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z = 0 ( ( x , y , z ) ≠ ( 0 , 0 , 0 ) ) \frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}=0\;\big({\color{Purple}(x,y,z)\neq(0,0,0)}\big) ∂x∂P+∂y∂Q+∂z∂R=0((x,y,z)=(0,0,0)) 2 o 2^o\; 2o作内侧闭合曲面 Σ 0 \,\Sigma_0\, Σ0,并标明区域:
令 Σ 0 : x 2 + y 2 + z 2 = r 2 ( r > 0 \,\Sigma_0:x^2+y^2+z^2=r^2\;(r>0 Σ0:x2+y2+z2=r2(r>0, Σ 0 \Sigma_0\, Σ0在 Σ \,\Sigma\, Σ内, Σ 0 \,\Sigma_0\, Σ0取外侧).
设 Σ 0 \,\Sigma_0\, Σ0与 Σ \,\Sigma\, Σ所围成的区域为 Ω 1 \,\Omega_1 Ω1, Σ 0 \Sigma_0\, Σ0所围成的单连通区域为 Ω 2 \,\Omega_2 Ω2.
3 o 3^o\; 3o计算:
由 ∯ Σ + Σ 0 − x d y d z + y d z d x + z d x d y ( x 2 + y 2 + z 2 ) 3 2 = ∭ Ω 1 0 d v = 0 得 由\oiint\limits_{\Sigma+\Sigma_0^-}\frac{x\text{d}y\text{d}z+y\text{d}z\text{d}x+z\text{d}x\text{d}y}{(x^2+y^2+z^2)^{\frac{3}{2}}}=\iiint\limits_{\Omega_1}0\text{d}v=0\,得 由Σ+Σ0−∬(x2+y2+z2)23xdydz+ydzdx+zdxdy=Ω1∭0dv=0得 I = ∯ Σ x d y d z + y d z d x + z d x d y ( x 2 + y 2 + z 2 ) 3 2 = ∯ Σ 0 x d y d z + y d z d x + z d x d y ( x 2 + y 2 + z 2 ) 3 2 I=\oiint\limits_{\Sigma}\frac{x\text{d}y\text{d}z+y\text{d}z\text{d}x+z\text{d}x\text{d}y}{(x^2+y^2+z^2)^{\frac{3}{2}}}=\oiint\limits_{\Sigma_0}\frac{x\text{d}y\text{d}z+y\text{d}z\text{d}x+z\text{d}x\text{d}y}{(x^2+y^2+z^2)^{\frac{3}{2}}} I=Σ∬(x2+y2+z2)23xdydz+ydzdx+zdxdy=Σ0∬(x2+y2+z2)23xdydz+ydzdx+zdxdy = 1 r 3 ∬ Σ 0 x d y d z + y d z d x + z d x d y = 3 r 3 ∭ Ω 2 d v = 4 π =\frac{1}{r^3}\iint\limits_{\Sigma_0}x\text{d}y\text{d}z+y\text{d}z\text{d}x+z\text{d}x\text{d}y=\frac{3}{r^3}\iiint\limits_{\Omega_2}\text{d}v=4\pi =r31Σ0∬xdydz+ydzdx+zdxdy=r33Ω2∭dv=4π
(三) 曲面不封闭且 div F ⃗ = 0 \,\text{div}\vec{F}=0 divF=0
特征:题目给的曲面不是闭曲面,并且题目还满足:
div
F
⃗
=
0
\color{Blue}\color{Blue}\text{div}\,\vec{F}=0
divF=0
思路:换曲面,使积分容易计算.
原理: div F ⃗ = 0 \text{div}\,\vec{F}=0 divF=0,则通过任何封闭曲面(无奇点在内部)的通量为 0 \,0 0,
由: ∯ Σ 1 + Σ 0 P d y d z + Q d z d x + R d x d y = 0 , ∯ Σ 2 + Σ 0 P d y d z + Q d z d x + R d x d y = 0 \oiint\limits_{\Sigma_1+\Sigma_0}P\text{d}y\text{d}z+Q\text{d}z\text{d}x+R\text{d}x\text{d}y=0,\oiint\limits_{\Sigma_2+\Sigma_0}P\text{d}y\text{d}z+Q\text{d}z\text{d}x+R\text{d}x\text{d}y=0 Σ1+Σ0∬Pdydz+Qdzdx+Rdxdy=0,Σ2+Σ0∬Pdydz+Qdzdx+Rdxdy=0
于是:
∯
Σ
1
P
d
y
d
z
+
Q
d
z
d
x
+
R
d
x
d
y
=
0
∯
Σ
2
P
d
y
d
z
+
Q
d
z
d
x
+
R
d
x
d
y
\oiint\limits_{\color{Blue}\Sigma_1}P\text{d}y\text{d}z+Q\text{d}z\text{d}x+R\text{d}x\text{d}y=0\oiint\limits_{\color{Red}\Sigma_2}P\text{d}y\text{d}z+Q\text{d}z\text{d}x+R\text{d}x\text{d}y
Σ1∬Pdydz+Qdzdx+Rdxdy=0Σ2∬Pdydz+Qdzdx+Rdxdy
(四) 曲面不封闭且 div F ⃗ ≠ 0 \,\text{div}\vec{F}\neq0 divF=0
特征:题目给的曲面不是闭曲面,并且题目中:
div
F
⃗
≠
0
\text{div}\vec{F}\neq0
divF=0
思路:补面,将曲面补为封闭曲面 (添加曲面),再使用 Gauss \,\text{Gauss} Gauss.
假设曲面
Σ
\,\Sigma\,
Σ是一个不封闭的曲面,通过补一个面
Σ
1
\,\Sigma_1\,
Σ1即可构成封闭曲面,则:
∬
Σ
=
∯
Σ
+
Σ
1
−
∬
Σ
1
\iint\limits_{\Sigma}=\oiint\limits_{\Sigma+\Sigma_1}-\iint\limits_{\Sigma_1}
Σ∬=Σ+Σ1∬−Σ1∬
=
±
∭
Ω
(
∂
P
∂
x
+
∂
Q
∂
y
+
∂
R
∂
z
)
d
v
±
∬
D
1
=\pm\iiint\limits_\Omega{\bigg(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}}+\frac{\partial R}{\partial z}\bigg)\text{d}v\pm\iint\limits_{D_1}
=±Ω∭(∂x∂P+∂y∂Q+∂z∂R)dv±D1∬
注意:
(1) 如果曲面本身很好计算,当然直接使用定积分法也可以.
(2) 不管是使用
Gauss
\,\text{Gauss}\,
Gauss的封闭曲面还是补上去的面,转换为重积分时都要注意判断符号.
(五) 由 div F ⃗ = 0 \,\text{div}\,\vec{F}=0 divF=0,建立微分方程求原函数
特征:题目第二类曲面积分被积函数出现连续可微的函数 f ( x ) \,f(x)\, f(x),并且 div F ⃗ = 0 \,\text{div}\,\vec{F}=0 divF=0 (单连通区域 G \,G\, G内任意封闭曲面的曲面积分为 0 \,0 0).
思路:根据 ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z = 0 \,\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}=0 ∂x∂P+∂y∂Q+∂z∂R=0,建立微分方程即可解出.