高数考研归纳 - 积分学 - 曲面积分

点击此处查看高数其他板块总结

Part A 第一类曲面积分 (对面积的曲面积分)

1 定义

∬ Σ f ( x , y , z ) d S = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i , η i , ζ i ) Δ S i \iint\limits_\Sigma f(x,y,z)\text{d}S=\lim_{\lambda\to 0}\sum\limits_{i=1}^nf(\xi_i,\eta_i,\zeta_i)\Delta S_i Σf(x,y,z)dS=λ0limi=1nf(ξi,ηi,ζi)ΔSi

  注意
    (1) Σ   \Sigma\, Σ被称为积分曲面 d S   \text{d}S\, dS称为面微分.
    (2) ∬ Σ f ( x , y , z ) d S   \iint\limits_\Sigma f(x,y,z)\text{d}S\, Σf(x,y,z)dS   Σ   \,\Sigma\, Σ的划分及点的取法无关.
    (3) 若   f ( x , y , z )   \,f(x,y,z)\, f(x,y,z)在光滑曲面   Σ   \,\Sigma\, Σ上连续,则   ∬ Σ f ( x , y , z ) d S   \,\iint\limits_\Sigma f(x,y,z)\text{d}S\, Σf(x,y,z)dS一定存在.
    (4) 如果   Σ   \,\Sigma\, Σ是闭曲面,曲面积分记为: ∯ Σ f ( x , y , z ) d S \oiint\limits_\Sigma f(x,y,z)\text{d}S Σ f(x,y,z)dS

    (5) 定积分、重积分和第一类曲线曲面积分是一脉相承的,都有着相似的性质和处理思路.

2 性质

(1) 基本性质

∬ Σ [ a f ( x , y , z ) ± b g ( x , y , z ) ] d S = a ∬ Σ f ( x , y , z ) d S + b ∬ Σ g ( x , y , z ) d S \iint\limits_\Sigma[af(x,y,z)\pm bg(x,y,z)]\text{d}S=a\iint\limits_\Sigma f(x,y,z)\text{d}S+b\iint\limits_\Sigma g(x,y,z)\text{d}S Σ[af(x,y,z)±bg(x,y,z)]dS=aΣf(x,y,z)dS+bΣg(x,y,z)dS ∬ Σ 1 + Σ 2 f ( x , y , z ) d S = ∬ Σ 1 f ( x , y , z ) d S + ∬ Σ 2 f ( x , y , z ) d S      ( Σ = Σ 1 + Σ 2 ) \iint\limits_{\Sigma_1+\Sigma_2} f(x,y,z)\text{d}S=\iint\limits_{\Sigma_1} f(x,y,z)\text{d}S+\iint\limits_{\Sigma_2} f(x,y,z)\text{d}S\;\;(\Sigma=\Sigma_1+\Sigma_2) Σ1+Σ2f(x,y,z)dS=Σ1f(x,y,z)dS+Σ2f(x,y,z)dS(Σ=Σ1+Σ2) ∬ Σ d S = A      ( A   为 曲 面 的 面 积 ) \iint\limits_\Sigma\text{d}S=A\;\;(A\,为曲面的面积) ΣdS=A(A)

(2) 对称奇偶性质

  (1) 设曲面   Σ   \,\Sigma\, Σ关于   y O z   \,yOz\, yOz平面对称,其中   Σ 1   \,\Sigma_1\, Σ1是其位于   y O z   \,yOz\, yOz平面前侧的部分,则:
∬ Σ f ( x , y , z ) d S = { 0 , f ( − x , y , z ) = − f ( x , y , z ) , 2 ∬ Σ 1 f ( x , y , z ) d S , f ( − x , y , z ) = f ( x , y , z ) . \iint\limits_\Sigma f(x,y,z)\text{d}S=\begin{cases}0,&f(-x,y,z)=-f(x,y,z),\\ 2\iint\limits_{\Sigma_1}f(x,y,z)\text{d}S,&f(-x,y,z)=f(x,y,z).\end{cases} Σf(x,y,z)dS=0,2Σ1f(x,y,z)dS,f(x,y,z)=f(x,y,z),f(x,y,z)=f(x,y,z).

  (2) 设曲面   Σ   \,\Sigma\, Σ关于   z O x   \,zOx\, zOx平面对称,其中   Σ 1   \,\Sigma_1\, Σ1是其位于   x O y   \,xOy\, xOy平面右侧的部分,则:
∬ Σ f ( x , y , z ) d S = { 0 , f ( x , − y , z ) = − f ( x , y , z ) , 2 ∬ Σ 1 f ( x , y , z ) d S , f ( x , − y , z ) = f ( x , y , z ) . \iint\limits_\Sigma f(x,y,z)\text{d}S=\begin{cases}0,&f(x,-y,z)=-f(x,y,z),\\ 2\iint\limits_{\Sigma_1}f(x,y,z)\text{d}S,&f(x,-y,z)=f(x,y,z).\end{cases} Σf(x,y,z)dS=0,2Σ1f(x,y,z)dS,f(x,y,z)=f(x,y,z),f(x,y,z)=f(x,y,z).

  (3) 设曲面   Σ   \,\Sigma\, Σ关于   x O y   \,xOy\, xOy平面对称,其中   Σ 1   \,\Sigma_1\, Σ1是其位于   x O y   \,xOy\, xOy平面上方的部分,则:
∬ Σ f ( x , y , z ) d S = { 0 , f ( x , y , − z ) = − f ( x , y , z ) , 2 ∬ Σ 1 f ( x , y , z ) d S , f ( x , y , − z ) = f ( x , y , z ) . \iint\limits_\Sigma f(x,y,z)\text{d}S=\begin{cases}0,&f(x,y,-z)=-f(x,y,z),\\ 2\iint\limits_{\Sigma_1}f(x,y,z)\text{d}S,&f(x,y,-z)=f(x,y,z).\end{cases} Σf(x,y,z)dS=0,2Σ1f(x,y,z)dS,f(x,y,z)=f(x,y,z),f(x,y,z)=f(x,y,z).

  (4) 轮换对称性:若曲面符合轮换对称性,则
∬ Σ f ( x , y , z ) d S = ∬ Σ f ( y , z , x ) d S = ∬ Σ f ( z , x , y ) d S \iint\limits_\Sigma f(x,y,z)\text{d}S=\iint\limits_\Sigma f(y,z,x)\text{d}S= \iint\limits_\Sigma f(z,x,y)\text{d}S Σf(x,y,z)dS=Σf(y,z,x)dS=Σf(z,x,y)dS

    轮换是指保持   x \,x x y y y z   z\, z坐标轴相对顺序不变的交换.
    本质上是由于按照这种规则重新命名坐标轴,   Σ   \,\Sigma\, Σ不变.

    更一般地,若交换   x \,x x y y y z   z\, z三者中任意两个 (比如交换   x   \,x\, x   y \,y y),   Σ   \,\Sigma\, Σ不变,则   Σ   \,\Sigma\, Σ还满足下面这样的关系:
∬ Σ f ( x , y , z ) d S = ∬ Σ f ( y , x , z ) d S \iint\limits_\Sigma f(x,y,z)\text{d}S=\iint\limits_\Sigma f(y,x,z)\text{d}S Σf(x,y,z)dS=Σf(y,x,z)dS

  . 设曲面   Σ : ∣ x ∣ + ∣ y ∣ + ∣ z ∣ = 1 \,\Sigma:|x|+|y|+|z|=1 Σ:x+y+z=1,求:
  I = ∯ Σ ( x + ∣ y ∣ ) d S \,I=\oiint\limits_\Sigma(x+|y|)\text{d}S I=Σ (x+y)dS

  解:由对称性 (曲面关于   z O y   \,zOy\, zOy面对称), I = ∯ Σ ∣ y ∣ d S I=\oiint\limits_{\Sigma}|y|\text{d}S I=Σ ydS
  由轮换对称性, I = 1 3 ∯ Σ ( ∣ x ∣ + ∣ y ∣ + ∣ z ∣ ) d S = 1 3 ∯ Σ d S I=\frac{1}{3}\oiint\limits_{\Sigma}(|x|+|y|+|z|)\text{d}S=\frac{1}{3}\oiint\limits_{\Sigma}\text{d}S I=31Σ (x+y+z)dS=31Σ dS
  曲面八个面大小相同, I = 8 3 ∯ Σ d S = 8 3 S Δ = 8 3 ⋅ 3 2 = 4 3 3 I=\frac{8}{3}\oiint\limits_{\Sigma}\text{d}S=\frac{8}{3}S_\Delta=\frac{8}{3}\cdot \frac{\sqrt{3}}{2}=\frac{4}{3}\sqrt{3} I=38Σ dS=38SΔ=3823 =343 .

3 计算方法

(一) 替代法

  若被积函数中含曲面的表达式,则可以整体替代.

  原因:和曲线积分一样,曲面积分的积分区域是一个严格成立的等式 (重积分的积分区域是一个不等式,所以不能直接代入),无论被积函数中的自变量如何组合,自变量都满足这个等式,所以可以直接替代.

  . 计算   ∬ Σ ( x + y + z ) 2 d S \,\iint\limits_\Sigma{(x+y+z)}^2\text{d}S Σ(x+y+z)2dS,其中   Σ : z = 4 − x 2 − y 2 \,\Sigma:z=\sqrt{4-x^2-y^2} Σ:z=4x2y2
∬ Σ ( x + y + z ) 2 d S = ∬ Σ ( x 2 + y 2 + z 2 ) d S = ∬ Σ 4 dS = 4 ⋅ 8 π = 32 π . \iint\limits_\Sigma(x+y+z)^2\text{d}S=\iint\limits_\Sigma({\color{Blue}x^2+y^2+z^2})\text{d}S=\iint\limits_\Sigma{\color{Blue}4}\text{dS}=4\cdot8\pi=32\pi. Σ(x+y+z)2dS=Σ(x2+y2+z2)dS=Σ4dS=48π=32π.

  对于下面这种轮换对称性与替代法的结合使用应该非常熟练:
Σ : x 2 + y 2 + z 2 = a 2 , ∬ Σ ( x 2 + 4 y 2 + 9 z 2 ) d S = 14 3 a 2 ∬ Σ d S = 14 3 a 2 ⋅ 4 π a 2 \Sigma:x^2+y^2+z^2=a^2,\iint\limits_\Sigma(x^2+4y^2+9z^2)\text{d}S=\frac{14}{3}a^2\iint\limits_\Sigma\text{d}S=\frac{14}{3}a^2\cdot 4\pi a^2 Σ:x2+y2+z2=a2Σ(x2+4y2+9z2)dS=314a2ΣdS=314a24πa2

(二) 二重积分法

  (1) 投影到   x O y   \,xOy\, xOy面:

    设   Σ : z = φ ( x , y )   ( ( x , y ) ∈ D x y ) \,\Sigma:z=\varphi(x,y)\,\big((x,y)\in D_{xy}\big) Σ:z=φ(x,y)((x,y)Dxy) D x y   D_{xy}\, Dxy   Σ   \,\Sigma\, Σ   x O y   \,xOy\, xOy面上的投影区域.

d S = 1 + z x ′ 2 + z y ′ 2 d x d y \color{Purple}\text{d}S=\sqrt{1+z_x'^2+z'^2_y}\text{d}x\text{d}y dS=1+zx2+zy2 dxdy I = ∬ D x y f [ x , y , φ ( x , y ) ] ⋅ d S = ∬ D x y f [ x , y , φ ( x , y ) ] ⋅ 1 + z x ′ 2 + z y ′ 2 d x d y I=\iint\limits_{D_{xy}}f[x,y,\varphi(x,y)]\cdot\text{d}S=\iint\limits_{D_{xy}}f[x,y,\varphi(x,y)]\cdot\sqrt{1+z_x'^2+z'^2_y}\text{d}x\text{d}y I=Dxyf[x,y,φ(x,y)]dS=Dxyf[x,y,φ(x,y)]1+zx2+zy2 dxdy

  (2) 投影到   y O z   \,yOz\, yOz面:

    设   Σ : x = φ ( y , z )   ( ( y , z ) ∈ D y z ) \,\Sigma:x=\varphi(y,z)\,\big((y,z)\in D_{yz}\big) Σ:x=φ(y,z)((y,z)Dyz) D y z   D_{yz}\, Dyz   Σ   \,\Sigma\, Σ   y O z   \,yOz\, yOz面上的投影区域.

d S = 1 + x y ′ 2 + x z ′ 2 d y d z \color{Purple}\text{d}S=\sqrt{1+x_y'^2+x'^2_z}\text{d}y\text{d}z dS=1+xy2+xz2 dydz I = ∬ D y z f [ φ ( y , z ) , y , z ] ⋅ d S = ∬ D y z f [ φ ( y , z ) , y , z ] ⋅ 1 + x y ′ 2 + x z ′ 2 d y d z I=\iint\limits_{D_{yz}}f[\varphi(y,z),y,z]\cdot\text{d}S=\iint\limits_{D_{yz}}f[\varphi(y,z),y,z]\cdot\sqrt{1+x_y'^2+x'^2_z}\text{d}y\text{d}z I=Dyzf[φ(y,z),y,z]dS=Dyzf[φ(y,z),y,z]1+xy2+xz2 dydz

  (3) 投影到   z O x   \,zOx\, zOx面:

    设   Σ : y = φ ( x , z )   ( ( x , z ) ∈ D x z ) \,\Sigma:y=\varphi(x,z)\,\big((x,z)\in D_{xz}\big) Σ:y=φ(x,z)((x,z)Dxz) D x z   D_{xz}\, Dxz   Σ   \,\Sigma\, Σ   z O x   \,zOx\, zOx面上的投影区域.

d S = 1 + y x ′ 2 + y z ′ 2 d z d x \color{Purple}\text{d}S=\sqrt{1+y_x'^2+y'^2_z}\text{d}z\text{d}x dS=1+yx2+yz2 dzdx I = ∬ D x z f [ x , φ ( x , z ) , z ] ⋅ d S = ∬ D x z f [ x , φ ( x , z ) , z ] ⋅ 1 + y x ′ 2 + y z ′ 2 d z d x I=\iint\limits_{D_{xz}}f[x,\varphi(x,z),z]\cdot\text{d}S=\iint\limits_{D_{xz}}f[x,\varphi(x,z),z]\cdot\sqrt{1+y_x'^2+y'^2_z}\text{d}z\text{d}x I=Dxzf[x,φ(x,z),z]dS=Dxzf[x,φ(x,z),z]1+yx2+yz2 dzdx

  注意:有的题目   Σ   \,\Sigma\, Σ方程表示可能为隐函数,需要两边求导或列方程解出偏导数.

4 几何应用

(1) 面积 (光滑曲面薄片)

  光滑曲面薄片   Σ : z = z ( x , y )   \,\Sigma:z=z(x,y)\, Σ:z=z(x,y)的面积为:
  
A = ∬ D x y d S = ∬ D x y 1 + z x ′ 2 + z y ′ 2 d x d y \color{Blue}A=\iint\limits_{D_{xy}}\text{d}S=\iint\limits_{D_{xy}}\sqrt{1+z_x'^2+z_y'^2}\text{d}x\text{d}y A=DxydS=Dxy1+zx2+zy2 dxdy

  常见图形的面积公式
    圆: A = π r 2 \color{Blue}A=\pi r^2 A=πr2 ( r   r\, r为半径);
    椭圆: A = π ⋅ a ⋅ b \color{Blue}A=\pi\cdot a\cdot b A=πab ( a a a b   b\, b为椭圆的长短半轴长);
    扇形: A = 1 2 ⋅ r ⋅ l \color{Blue}A=\frac{1}{2}\cdot r\cdot l A=21rl ( r   r\, r为半径, l   l\, l为弧长);
    矩形: A = a ⋅ b \color{Blue}A=a\cdot b A=ab ( a a a b   b\, b为矩形边长);
    平行四边形: A = a ⋅ h \color{Blue}A=a\cdot h A=ah ( h   h\, h为平行四边形的高);
    菱形: A = a ⋅ b 2 \color{Blue}A=\frac{a\cdot b}{2} A=2ab ( a a a b   b\, b为菱形的对角线);
    梯形: A = ( a + b ) ⋅ h 2 \color{Blue}A=\frac{(a+b)\cdot h}{2} A=2(a+b)h ( a a a b   b\, b为梯形的上下底长, h   h\, h为梯形的高);
    任意三角形: A = a ⋅ h 2 \color{Blue}A=\frac{a\cdot h}{2} A=2ah ( a   a\, a为三角形的底边长、 h   h\, h为三角形的高);
    任意三角形 (海伦公式): A = p ( p − a ) ( p − b ) ( p − c ) \color{Blue}A=\sqrt{p(p-a)(p-b)(p-c)} A=p(pa)(pb)(pc) p = a + b + c 2 \color{Blue}p=\frac{a+b+c}{2} p=2a+b+c ( a a a b b b c   c\, c为三角形的边长);
    等边三角形: A = 3 4 a 2 \color{Blue}A=\frac{\sqrt{3}}{4}a^2 A=43 a2 ( a   a\, a为三角形边长).

(2) 形心坐标 (光滑曲面薄片)

  形心:几何形体的中心.

  光滑曲面薄片   Σ   \,\Sigma\, Σ的形心坐标   ( x ˉ , y ˉ )   \,\color{Purple}(\bar{x},\bar{y})\, (xˉ,yˉ)计算公式

x ˉ = ∬ Σ x d S ∬ Σ d S = 1 A ∬ Σ x d S \bar{x}=\frac{\iint\limits_\Sigma{\color{Blue}x}\text{d}S}{\iint\limits_\Sigma\text{d}S}=\frac{1}{A}\iint\limits_\Sigma{\color{Blue}x}\text{d}S xˉ=ΣdSΣxdS=A1ΣxdS y ˉ = ∬ Σ y d S ∬ Σ d S = 1 A ∬ Σ y d S \bar{y}=\frac{\iint\limits_\Sigma{\color{Blue}y}\text{d}S}{\iint\limits_\Sigma\text{d}S}=\frac{1}{A}\iint\limits_\Sigma{\color{Blue}y}\text{d}S yˉ=ΣdSΣydS=A1ΣydS z ˉ = ∬ Σ z d S ∬ Σ d S = 1 A ∬ Σ z d S \bar{z}=\frac{\iint\limits_\Sigma{\color{Blue}z}\text{d}S}{\iint\limits_\Sigma\text{d}S}=\frac{1}{A}\iint\limits_\Sigma{\color{Blue}z}\text{d}S zˉ=ΣdSΣzdS=A1ΣzdS

  其中: A   A\, A为曲面的表面积.

  形心公式逆用
∬ Σ x d S = x ˉ ⋅ ∬ Σ d S = x ˉ ⋅ A \iint\limits_\Sigma{\color{Blue}x}\text{d}S=\bar{x}\cdot \iint\limits_\Sigma\text{d}S=\bar{x}\cdot A ΣxdS=xˉΣdS=xˉA ∬ Σ y d S = y ˉ ⋅ ∬ Σ d S = y ˉ ⋅ A \iint\limits_\Sigma{\color{Blue}y}\text{d}S=\bar{y}\cdot \iint\limits_\Sigma\text{d}S=\bar{y}\cdot A ΣydS=yˉΣdS=yˉA ∬ Σ z d S = z ˉ ⋅ ∬ Σ d S = z ˉ ⋅ A \iint\limits_\Sigma{\color{Blue}z}\text{d}S=\bar{z}\cdot \iint\limits_\Sigma\text{d}S=\bar{z}\cdot A ΣzdS=zˉΣdS=zˉA

  在计算第一类曲面积分时,遇到   ∬ Σ x d S \,\iint\limits_\Sigma{\color{Blue}x}\text{d}S ΣxdS ∬ Σ y d S \iint\limits_\Sigma{\color{Blue}y}\text{d}S ΣydS ∬ Σ z d S \iint\limits_\Sigma{\color{Blue}z}\text{d}S ΣzdS,并且图形规则(可以直接看出形心)、曲面表面积易于确定时,应立即想到形心公式的逆用. 通过逆用形心公式,可以避免计算面微分、确定积分限,大大简化计算.

5 物理应用

(1) 质量 (光滑曲面薄片)

  若   ρ ( x , y , z )   \,\rho(x,y,z)\, ρ(x,y,z)为光滑曲面薄片   Σ   \,\Sigma\, Σ的面密度,则薄片质量为:
m = ∬ Σ ρ ( x , y , z ) d S \color{Blue}m=\iint\limits_\Sigma\rho(x,y,z)\text{d}S m=Σρ(x,y,z)dS

(2) 质心/重心坐标 (光滑曲面薄片)

  质心:质量的中心.

  光滑曲面薄片   Σ   \,\Sigma\, Σ的质心坐标   ( x ˉ , y ˉ )   \,\color{Purple}(\bar{x},\bar{y})\, (xˉ,yˉ)计算公式

    设光滑曲面薄片   Σ   \,\Sigma\, Σ的面密度为   ρ ( x , y ) \,\color{Purple}\rho(x,y) ρ(x,y),则薄片的质心坐标为: x ˉ = ∬ Σ x ⋅ ρ ( x , y , z ) d S ∬ Σ ρ ( x , y , z ) d S \bar{x}=\frac{\iint\limits_\Sigma{\color{Blue}x}\cdot{\color{Purple}\rho(x,y,z)}\text{d}S}{\iint\limits_\Sigma{\color{Purple}\rho(x,y,z)}\text{d}S} xˉ=Σρ(x,y,z)dSΣxρ(x,y,z)dS y ˉ = ∬ Σ y ⋅ ρ ( x , y , z ) d S ∬ Σ ρ ( x , y , z ) d S \bar{y}=\frac{\iint\limits_\Sigma{\color{Blue}y\cdot{\color{Purple}\rho(x,y,z)}}\text{d}S}{\iint\limits_\Sigma{\color{Purple}\rho(x,y,z)}\text{d}S} yˉ=Σρ(x,y,z)dSΣyρ(x,y,z)dS z ˉ = ∬ Σ z ⋅ ρ ( x , y , z ) d S ∬ Σ ρ ( x , y , z ) d S \bar{z}=\frac{\iint\limits_\Sigma{\color{Blue}z\cdot{\color{Purple}\rho(x,y,z)}}\text{d}S}{\iint\limits_\Sigma{\color{Purple}\rho(x,y,z)}\text{d}S} zˉ=Σρ(x,y,z)dSΣzρ(x,y,z)dS

  注意
    (1) 从形式上看,质心公式只是在形心公式分子分母的曲面积分内部多乘了一个   ρ \,\color{Purple}\rho ρ.
    (2) 当薄片密度分布均匀(即   ρ   \,\rho\, ρ为常数)时,质心与形心重合.
    (3) 重心:重心是重力平衡的重心,质心重心是重合的.

(3) 转动惯量 (光滑曲面薄片)

  若   ρ ( x , y , z )   \,\rho(x,y,z)\, ρ(x,y,z)为光滑曲面薄片   Σ   \,\Sigma\, Σ的面密度,则其转动惯量计算公式为:

     Σ   \,\Sigma\, Σ   x   \,x\, x的转动惯量为
I x = ∬ Σ ( y 2 + z 2 ) ⋅ ρ ( x , y , z ) d S {\color{Green}I_x}=\iint\limits_\Sigma{\color{Blue}(y^2+z^2)}\cdot{\color{Purple}\rho(x,y,z)}\text{d}S Ix=Σ(y2+z2)ρ(x,y,z)dS

     Σ   \,\Sigma\, Σ   y   \,y\, y的转动惯量为
I y = ∬ Σ ( x 2 + z 2 ) ⋅ ρ ( x , y , z ) d S {\color{Green}I_y}=\iint\limits_\Sigma{\color{Blue}(x^2+z^2)}\cdot{\color{Purple}\rho(x,y,z)}\text{d}S Iy=Σ(x2+z2)ρ(x,y,z)dS

     Σ   \,\Sigma\, Σ原点的转动惯量为
I O = ∬ Σ ( x 2 + y 2 + z 2 ) ⋅ ρ ( x , y , z ) d S {\color{Green}I_O}=\iint\limits_\Sigma{\color{Blue}(x^2+y^2+z^2)}\cdot{\color{Purple}\rho(x,y,z)}\text{d}S IO=Σ(x2+y2+z2)ρ(x,y,z)dS

  一般情况
    设   M ( x , y , z )   \,M(x,y,z)\, M(x,y,z)   Σ   \,\Sigma\, Σ上的一点, l   l\, l为一条直线,   M   \,M\, M到直线   l   \,l\, l的距离为   d \,d d,则   Σ   \,\Sigma\, Σ   l   \,l\, l的转动惯量为:
I l = ∬ Σ d 2 ⋅ ρ ( x , y , z ) d S {\color{Green}I_l}=\iint\limits_\Sigma{\color{Blue}d^2}\cdot{\color{Purple}\rho(x,y,z)}\text{d}S Il=Σd2ρ(x,y,z)dS

(4) 引力 (光滑曲面薄片)

  若光滑曲面薄片   Σ   \,\Sigma\, Σ的面密度为   ρ ( x , y , z ) \,\rho(x,y,z) ρ(x,y,z),则曲面对点   M ( x 0 , y 0 , z 0 )   \,M(x_0,y_0,z_0)\, M(x0,y0,z0)处质量为   m   \,m\, m的质点引力   ( F x , F y , F z )   \,\color{Purple}(F_x,F_y,F_z)\, (Fx,Fy,Fz)的计算公式为: F x = G m ∬ Σ ρ ( x , y , z ) ( x − x 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + z 0 2 ] 3 2 d S {\color{Green}F_x}=Gm\iint\limits_\Sigma\frac{{\color{Purple}\rho(x,y,z)}{\color{Blue}(x-x_0)}}{[(x-x_0)^2+(y-y_0)^2+z_0^2]^{\frac{3}{2}}}\text{d}S Fx=GmΣ[(xx0)2+(yy0)2+z02]23ρ(x,y,z)(xx0)dS F y = G m ∬ Σ ρ ( x , y , z ) ( y − y 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + z 0 2 ] 3 2 d S {\color{Green}F_y}=Gm\iint\limits_\Sigma\frac{{\color{Purple}\rho(x,y,z)}{\color{Blue}(y-y_0)}}{[(x-x_0)^2+(y-y_0)^2+z_0^2]^{\frac{3}{2}}}\text{d}S Fy=GmΣ[(xx0)2+(yy0)2+z02]23ρ(x,y,z)(yy0)dS F z = G m ∬ Σ ρ ( x , y , z ) ( z − z 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + z 0 2 ] 3 2 d S {\color{Green}F_z}=Gm\iint\limits_\Sigma\frac{{\color{Purple}\rho(x,y,z)}{\color{Blue}(z-z_0)}}{[(x-x_0)^2+(y-y_0)^2+z_0^2]^{\frac{3}{2}}}\text{d}S Fz=GmΣ[(xx0)2+(yy0)2+z02]23ρ(x,y,z)(zz0)dS

   G   G\, G为引力常量.

Part B 第二类曲面积分 (对坐标的曲面积分)

1 定义

  (1) 函数   P ( x , y , z )   \,P(x,y,z)\, P(x,y,z)在有向曲面   Σ   \,\Sigma\, Σ对坐标   y \,y y z   z\, z的曲面积分 (第二类曲面积分):
∬ Σ P ( x , y , z ) d y d z = lim ⁡ λ → 0 ∑ i = 1 n P ( ξ i , η i , ζ i ) ( Δ S i ) y z \iint\limits_{\Sigma}P(x,y,z)\text{d}y\text{d}z=\lim\limits_{\lambda\to0}\sum\limits^n_{i=1}P(\xi_i,\eta_i,\zeta_i)(\Delta S_i)_{yz} ΣP(x,y,z)dydz=λ0limi=1nP(ξi,ηi,ζi)(ΔSi)yz

  (2) 函数   Q ( x , y , z )   \,Q(x,y,z)\, Q(x,y,z)在有向曲面   Σ   \,\Sigma\, Σ对坐标   x \,x x z   z\, z的曲面积分 (第二类曲面积分):
∬ Σ Q ( x , y , z ) d z d x = lim ⁡ λ → 0 ∑ i = 1 n Q ( ξ i , η i , ζ i ) ( Δ S i ) z x \iint\limits_{\Sigma}Q(x,y,z)\text{d}z\text{d}x=\lim\limits_{\lambda\to0}\sum\limits^n_{i=1}Q(\xi_i,\eta_i,\zeta_i)(\Delta S_i)_{zx} ΣQ(x,y,z)dzdx=λ0limi=1nQ(ξi,ηi,ζi)(ΔSi)zx

  (3) 函数   R ( x , y , z )   \,R(x,y,z)\, R(x,y,z)在有向曲面   Σ   \,\Sigma\, Σ对坐标   x \,x x y   y\, y的曲面积分 (第二类曲面积分):
∬ Σ R ( x , y , z ) d x d y = lim ⁡ λ → 0 ∑ i = 1 n R ( ξ i , η i , ζ i ) ( Δ S i ) x y \iint\limits_{\Sigma}R(x,y,z)\text{d}x\text{d}y=\lim\limits_{\lambda\to0}\sum\limits^n_{i=1}R(\xi_i,\eta_i,\zeta_i)(\Delta S_i)_{xy} ΣR(x,y,z)dxdy=λ0limi=1nR(ξi,ηi,ζi)(ΔSi)xy

  (4) 简记:
∬ Σ P d y d z + ∬ Σ Q d z d x + ∬ Σ R d x d y = ∬ Σ P d y d z + Q d z d x + R d x d y \iint\limits_{\Sigma}P\text{d}y\text{d}z+\iint\limits_{\Sigma}Q\text{d}z\text{d}x+\iint\limits_{\Sigma}R\text{d}x\text{d}y=\color{Purple}\iint\limits_{\Sigma}P\text{d}y\text{d}z+Q\text{d}z\text{d}x+R\text{d}x\text{d}y ΣPdydz+ΣQdzdx+ΣRdxdy=ΣPdydz+Qdzdx+Rdxdy

  (5) 向量形式:
∬ Σ F ⃗ ⋅ d S ⃗ = ∬ Σ F ⃗ ⋅ n 0 ⃗ d S \color{Purple}\iint\limits_\Sigma \vec{F}\cdot\text{d}\vec{S}=\iint\limits_\Sigma\vec{F}\cdot\vec{n^0}\text{d}S ΣF dS =ΣF n0 dS    其中, F ⃗ = P ⋅ i ⃗ + Q ⋅ j ⃗ + R ⋅ k ⃗ \vec{F}=P\cdot\vec{i}+Q\cdot\vec{j}+R\cdot\vec{k} F =Pi +Qj +Rk d S ⃗ = d y d z ⋅ i ⃗ + d z d x ⋅ j ⃗ + d x d y ⋅ k ⃗ \text{d}\vec{S}=\text{d}y\text{d}z\cdot \vec{i}+\text{d}z\text{d}x\cdot \vec{j}+\text{d}x\text{d}y\cdot \vec{k} dS =dydzi +dzdxj +dxdyk n 0 ⃗   \vec{n_0}\, n0 代表有向曲面   Σ   \,\Sigma\, Σ指定侧的单位法向量.

  注意
    (1) Σ   \Sigma\, Σ被称为积分曲面 d S ⃗   \text{d}\vec{S}\, dS 被称为面微分向量.
    (2) 曲面积分与   Σ   \,\Sigma\, Σ的划分及点的取法无关.
    (3) 若   P \,P P Q Q Q R   R\, R在光滑曲面   Σ   \,\Sigma\, Σ上连续,则曲面积分一定存在.
    (4) 流向   Σ   \,\Sigma\, Σ指定侧的流量   Φ   \,\Phi\, Φ为:
Φ = ∬ Σ P ( x , y , z ) d y d z + Q ( x , y , z ) d z d x + R ( x , y , z ) d x d y \Phi=\iint\limits_{\Sigma}P(x,y,z)\text{d}y\text{d}z+Q(x,y,z)\text{d}z\text{d}x+R(x,y,z)\text{d}x\text{d}y Φ=ΣP(x,y,z)dydz+Q(x,y,z)dzdx+R(x,y,z)dxdy    (5) 快速判断投影方向:
       d y d z \text{d}y\text{d}z dydz:观察者在   x   \,x\, x轴正半轴观察曲面,若曲面方向指向观察者,投影为正,若曲面方向背向观察者,投影为负;
       d z d x \text{d}z\text{d}x dzdx:观察者在   y   \,y\, y轴正半轴观察曲面,若曲面方向指向观察者,投影为正,若曲面方向背向观察者,投影为负;
       d x d y \text{d}x\text{d}y dxdy:观察者在   z   \,z\, z轴正半轴观察曲面,若曲面方向指向观察者,投影为正,若曲面方向背向观察者,投影为负.

2 性质

(1) 简单性质

∬ Σ − P ( x , y , z ) d y d z + Q ( x , y , z ) d z d x + R ( x , y , z ) d x d y = − ∬ Σ P ( x , y , z ) d y d z + Q ( x , y , z ) d z d x + R ( x , y , z ) d x d y \iint\limits_{\Sigma^-}P(x,y,z)\text{d}y\text{d}z+Q(x,y,z)\text{d}z\text{d}x+R(x,y,z)\text{d}x\text{d}y=-\iint\limits_{\Sigma}P(x,y,z)\text{d}y\text{d}z+Q(x,y,z)\text{d}z\text{d}x+R(x,y,z)\text{d}x\text{d}y ΣP(x,y,z)dydz+Q(x,y,z)dzdx+R(x,y,z)dxdy=ΣP(x,y,z)dydz+Q(x,y,z)dzdx+R(x,y,z)dxdy ∬ Σ P d y d z + Q d z d x + R d x d y = ∬ Σ 1 P d y d z + Q d z d x + R d x d y + ∬ Σ 2 P d y d z + Q d z d x + R d x d y      ( Σ = Σ 1 + Σ 2 ) \iint\limits_{\Sigma}P\text{d}y\text{d}z+Q\text{d}z\text{d}x+R\text{d}x\text{d}y=\iint\limits_{\Sigma_1}P\text{d}y\text{d}z+Q\text{d}z\text{d}x+R\text{d}x\text{d}y+\iint\limits_{\Sigma_2}P\text{d}y\text{d}z+Q\text{d}z\text{d}x+R\text{d}x\text{d}y\;\;(\Sigma=\Sigma_1+\Sigma_2) ΣPdydz+Qdzdx+Rdxdy=Σ1Pdydz+Qdzdx+Rdxdy+Σ2Pdydz+Qdzdx+Rdxdy(Σ=Σ1+Σ2)

(2) 对称奇偶性

  下面只列举一种情况:
  以下对称性需要特别熟练,使用非常频繁:

    (1) 曲面关于   y O z   \,yOz\, yOz面对称,且前后两侧曲面方向相反,   Σ 1   \,\Sigma_1\, Σ1是其位于   y O z   \,yOz\, yOz平面前侧的部分,对于 ∬ Σ P ( x , y , z ) d y d z \iint\limits_{\Sigma}P(x,y,z)\text{d}y\text{d}z ΣP(x,y,z)dydz      若   P ( x , y , z )   \,P(x,y,z)\, P(x,y,z)   x   \,x\, x的偶函数 (或不含   x \,x x),则该积分为   0 \,0 0
      若   P ( x , y , z )   \,P(x,y,z)\, P(x,y,z)   x   \,x\, x的奇函数,则该积分为   2 ∬ Σ 1 P ( x , y , z ) d y d z \,2\iint\limits_{\Sigma_1}P(x,y,z)\text{d}y\text{d}z 2Σ1P(x,y,z)dydz

    (2) 曲面关于   z O x   \,zOx\, zOx面对称,且左右两侧曲面方向相反,   Σ 1   \,\Sigma_1\, Σ1是其位于   z O x   \,zOx\, zOx平面右侧的部分,对于 ∬ Σ Q ( x , y , z ) d z d x \iint\limits_{\Sigma}Q(x,y,z)\text{d}z\text{d}x ΣQ(x,y,z)dzdx      若   Q ( x , y , z )   \,Q(x,y,z)\, Q(x,y,z)   y   \,y\, y的偶函数 (或不含   y \,y y),则该积分为   0 \,0 0
      若   Q ( x , y , z )   \,Q(x,y,z)\, Q(x,y,z)   y   \,y\, y的奇函数,则该积分为   2 ∬ Σ 1 Q ( x , y , z ) d z d x \,2\iint\limits_{\Sigma_1}Q(x,y,z)\text{d}z\text{d}x 2Σ1Q(x,y,z)dzdx

    (3) 曲面关于   x O y   \,xOy\, xOy面对称,且上下两侧曲面方向相反,   Σ 1   \,\Sigma_1\, Σ1是其位于   x O y   \,xOy\, xOy平面上侧的部分,对于 ∬ Σ R ( x , y , z ) d x d y \iint\limits_{\Sigma}R(x,y,z)\text{d}x\text{d}y ΣR(x,y,z)dxdy      若   R ( x , y , z )   \,R(x,y,z)\, R(x,y,z)   z   \,z\, z的偶函数 (或不含   z \,z z),则该积分为   0 \,0 0
      若   R ( x , y , z )   \,R(x,y,z)\, R(x,y,z)   z   \,z\, z的奇函数,则该积分为   2 ∬ Σ 1 R ( x , y , z ) d x d y \,2\iint\limits_{\Sigma_1}R(x,y,z)\text{d}x\text{d}y 2Σ1R(x,y,z)dxdy.

  例: I = ∬ Σ ( x + 3 z 2 ) d y d z + ( x 3 z 2 + y z ) d z d x − 3 y 2 d x d y I=\iint\limits_{\Sigma}(x+3z^2)\text{d}y\text{d}z+(x^3z^2+yz)\text{d}z\text{d}x-3y^2\text{d}x\text{d}y I=Σ(x+3z2)dydz+(x3z2+yz)dzdx3y2dxdy Σ : z = 2 − x 2 + y 2 \Sigma:z=2-\sqrt{x^2+y^2} Σ:z=2x2+y2 .
    显然   Σ   \,\Sigma\, Σ是同时关于   y O z   \,yOz\, yOz面和   z O x   \,zOx\, zOx面对称的圆锥面,利用上面的对称性就可以直接简化积分式为:
I = ∬ Σ x d y d z + y z d z d x − 3 y 2 d x d y I=\iint\limits_{\Sigma}x\text{d}y\text{d}z+yz\text{d}z\text{d}x-3y^2\text{d}x\text{d}y I=Σxdydz+yzdzdx3y2dxdy
  可以总结出下面的规律:
    去掉偶数项
      对于   d y d z \,\text{d}y\text{d}z dydz,关注变量   x \,x x x   x\, x次数为偶数的项去掉 ( 3 z 2 3z^2 3z2), x   x\, x次数为奇数的项保留 ( x x x).
      对于   d z d x \,\text{d}z\text{d}x dzdx,关注变量   y \,y y y   y\, y次数为偶数的项去掉 ( x 3 z 2 x^3z^2 x3z2), y   y\, y次数为奇数的项保留 ( y z yz yz).
      对于   d x d y \,\text{d}x\text{d}y dxdy,由于不具有对称性,不作处理.

(3) 两类曲面积分之间的关系

∬ Σ P d y d z + Q d z d x + R d x d y = ∬ Σ ( P cos α + Q cos β + R cos γ ) d S \color{Purple}\iint\limits_{\Sigma}P\text{d}y\text{d}z+Q\text{d}z\text{d}x+R\text{d}x\text{d}y=\iint\limits_{\Sigma}(P\text{cos}\alpha+Q\text{cos}\beta+R\text{cos}\gamma)\text{d}S ΣPdydz+Qdzdx+Rdxdy=Σ(Pcosα+Qcosβ+Rcosγ)dS

  其中   cos α \,\text{cos}\alpha cosα cos β   \text{cos}\beta\, cosβ cos γ   \text{cos}\gamma\, cosγ为有向曲面   Σ   \,\Sigma\, Σ上一点处法向量的方向余弦.

  注意:利用法向量求方向余弦时一定要注意法向量的方向.

  若   P \,P P Q Q Q R   R\, R中出现方向余弦和   d S \,\text{d}S dS,就要转换为第二类曲面积分计算.

3 计算方法与思路

(一) 二重积分法

  将三个方向的曲面积分拆开计算.

  (1) 设   Σ : x = φ ( y , z ) \,\Sigma:x=\varphi(y,z) Σ:x=φ(y,z),计算   ∬ Σ P ( x , y , z ) d y d z \,\iint\limits_{\Sigma}P(x,y,z)\text{d}y\text{d}z ΣP(x,y,z)dydz ∬ Σ P ( x , y , z ) d y d z = ± ∬ D y z P [ φ ( y , z ) , y , z ] d y d z \iint\limits_{\Sigma}P(x,y,z)\text{d}y\text{d}z=\pm\iint\limits_{D_{yz}}P[\varphi(y,z),y,z]\text{d}y\text{d}z ΣP(x,y,z)dydz=±DyzP[φ(y,z),y,z]dydz    其中   D y z   \,D_{yz}\, Dyz为曲面在   y O z   \,yOz\, yOz平面上的投影区域.
    注意正负:若曲面上一点法向量与   x   \,x\, x轴夹角为锐角,符号为   “ + ”   \,“+”\, +,若为钝角,符号为   “ − ”   \,“-”\, .

  (2) 设   Σ : y = φ ( x , z ) \,\Sigma:y=\varphi(x,z) Σ:y=φ(x,z),计算   ∬ Σ Q ( x , y , z ) d z d x \,\iint\limits_{\Sigma}Q(x,y,z)\text{d}z\text{d}x ΣQ(x,y,z)dzdx
∬ Σ Q ( x , y , z ) d z d x = ± ∬ D x z P [ x , φ ( x , z ) , z ] d z d x \iint\limits_{\Sigma}Q(x,y,z)\text{d}z\text{d}x=\pm\iint\limits_{D_{xz}}P[x,\varphi(x,z),z]\text{d}z\text{d}x ΣQ(x,y,z)dzdx=±DxzP[x,φ(x,z),z]dzdx    其中   D x z   \,D_{xz}\, Dxz为曲面在   z O x   \,zOx\, zOx平面上的投影区域.
    注意正负:若曲面上一点法向量与   y   \,y\, y轴夹角为锐角,符号为   “ + ”   \,“+”\, +,若为钝角,符号为   “ − ”   \,“-”\, .

  (3) 设   Σ : z = φ ( x , y ) \,\Sigma:z=\varphi(x,y) Σ:z=φ(x,y),计算   ∬ Σ R ( x , y , z ) d x d y \,\iint\limits_{\Sigma}R(x,y,z)\text{d}x\text{d}y ΣR(x,y,z)dxdy
∬ Σ R ( x , y , z ) d z d x = ± ∬ D x y R [ x , y , φ ( x , y ) ] d x d y \iint\limits_{\Sigma}R(x,y,z)\text{d}z\text{d}x=\pm\iint\limits_{D_{xy}}R[x,y,\varphi(x,y)]\text{d}x\text{d}y ΣR(x,y,z)dzdx=±DxyR[x,y,φ(x,y)]dxdy    其中   D x y   \,D_{xy}\, Dxy为曲面在   x O y   \,xOy\, xOy平面上的投影区域.
    注意正负:若曲面上一点法向量与   z   \,z\, z轴夹角为锐角,符号为   “ + ”   \,“+”\, +,若为钝角,符号为   “ − ”   \,“-”\, .

  注意:等式两侧积分元素虽然形式上相同,但含义不同,以   d x d y   \,\text{d}x\text{d}y\, dxdy为例:
    左侧第二类曲面积分的   d x d y   \,\text{d}x\text{d}y\, dxdy代表曲面元素在   x O y   \,xOy\, xOy面的投影,其值可正可负;
    右侧二重积分的   d x d y   \,\text{d}x\text{d}y\, dxdy代表面积元素,其值必定为正.

(二) 转换投影法

  使用场景:若曲面投影到某个面会出现重叠或不好计算,可以考虑使用转换投影法,将曲面积分投影到另一个相对好算的面进行计算.

  比如抛物面   z = x 2 + y 2   \,z=x^2+y^2\, z=x2+y2的侧面使用二重积分法投影到   z O x   \,zOx\, zOx面和   y O z   \,yOz\, yOz面就不太好计算,可以考虑都转换投影到   x O y   \,xOy\, xOy平面 (投影域是一个圆),相对要好计算很多.

  方法
    下面以转换投影到   x O y   \,xOy\, xOy平面为例.
    step 1:先确定曲面法向量,求出方向余弦.
    step 2:由   d x d y = cos γ d S \,\text{d}x\text{d}y=\text{cos}\gamma\text{d}S dxdy=cosγdS,按照下面的方法完成转换:

d y d z = cos α d S = cos α cos γ cos γ d S = cos α cos γ d x d y \text{d}y\text{d}z=\text{cos}\alpha\text{d}S=\frac{\text{cos}\alpha}{\text{cos}\gamma}\text{cos}\gamma\text{d}S=\frac{\text{cos}\alpha}{\text{cos}\gamma}\text{d}x\text{d}y dydz=cosαdS=cosγcosαcosγdS=cosγcosαdxdy d z d x = cos β d S = cos β cos γ cos γ d S = cos β cos γ d x d y \text{d}z\text{d}x=\text{cos}\beta\text{d}S=\frac{\text{cos}\beta}{\text{cos}\gamma}\text{cos}\gamma\text{d}S=\frac{\text{cos}\beta}{\text{cos}\gamma}\text{d}x\text{d}y dzdx=cosβdS=cosγcosβcosγdS=cosγcosβdxdy

  读者务必要记住曲面投影元素与方向余弦的对应关系!

(三) 转换为第一类曲面积分

  使用场景:若曲面积分出现抽象函数   f ( x , y , z ) \,f(x,y,z) f(x,y,z),使用   Gauss   \,\text{Gauss}\, Gauss也消不掉. 一定要考虑第一类曲面积分!

  方法
    step 1:先由   F = f ( x , y , z ) \,F=f(x,y,z) F=f(x,y,z),计算方向余弦.
    step 2:根据下面的公式完成转换:

∬ Σ P d y d z + Q d z d x + R d x d y = ∬ Σ ( P cos α + Q cos β + R cos γ ) d S \iint\limits_{\Sigma}P\text{d}y\text{d}z+Q\text{d}z\text{d}x+R\text{d}x\text{d}y=\iint\limits_{\Sigma}(P\text{cos}\alpha+Q\text{cos}\beta+R\text{cos}\gamma)\text{d}S ΣPdydz+Qdzdx+Rdxdy=Σ(Pcosα+Qcosβ+Rcosγ)dS

(四) 高斯公式 ( Gauss \text{Gauss} Gauss)

定理

   Th . ( Green ) \text{Th}.(\text{Green}) Th.(Green) 设空间有界闭区域   Ω   \,\Omega\, Ω   Σ   \,\Sigma\, Σ   Ω   \,\Omega\, Ω外侧光滑闭曲面. P ( x , y , z ) P(x,y,z) P(x,y,z) Q ( x , y , z )   Q(x,y,z)\, Q(x,y,z) R ( x , y , z )   R(x,y,z)\, R(x,y,z)   Ω   \,\Omega\, Ω一阶连续可偏导,则有
∯ Σ P d y d z + Q d z d x + R d x d y = ∭ Ω ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d v \oiint\limits_{\Sigma}P\text{d}y\text{d}z+Q\text{d}z\text{d}x+R\text{d}x\text{d}y=\iiint\limits_\Omega\bigg(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\bigg)\text{d}v Σ Pdydz+Qdzdx+Rdxdy=Ω(xP+yQ+zR)dv

Gauss   \text{Gauss}\, Gauss的条件

  (1) Σ   \Sigma\, Σ是封闭曲面

    若   Σ   \,\Sigma\, Σ不封闭,则需要通过补面法使之封闭,再使用   Gauss \,\text{Gauss} Gauss.

  (2) Σ   \Sigma\, Σ是外侧曲面

    即   Σ   \,\Sigma\, Σ的单位法向量都指向区域外侧,若   Σ   \,\Sigma\, Σ   Ω   \,\Omega\, Ω的内侧曲面,则
∯ Σ P d y d z + Q d z d x + R d x d y = − ∭ Ω ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d v \oiint\limits_{\Sigma}P\text{d}y\text{d}z+Q\text{d}z\text{d}x+R\text{d}x\text{d}y={\color{Red}\bm-}\iiint\limits_\Omega\bigg(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\bigg)\text{d}v Σ Pdydz+Qdzdx+Rdxdy=Ω(xP+yQ+zR)dv

  (3) 一阶连续可偏导

    必须保证   P \,P P Q Q Q R   R\, R   Ω   \,\Omega\, Ω上具有一阶连续偏导数才能使用   Gauss \,\text{Gauss} Gauss. 若区域内存在不连续的点(称为奇点),则要使用挖洞法进行计算.

(五) 沿任意闭曲面的曲面积分为零的条件

   Th . \text{Th}. Th.   G   \,G\, G空间二维单连通区域,函数   P ( x , y , z ) \,P(x,y,z) P(x,y,z) Q ( x , y , z ) Q(x,y,z) Q(x,y,z) R ( x , y , z )   R(x,y,z)\, R(x,y,z)   G   \,G\, G内具有一阶连续偏导数,则曲面积分:
∬ Σ P d y d z + Q d z d x + R d x d y \iint\limits_{\Sigma}P\text{d}y\text{d}z+Q\text{d}z\text{d}x+R\text{d}x\text{d}y ΣPdydz+Qdzdx+Rdxdy

    在   G   \,G\, G内与所取曲面   Σ   \,\Sigma\, Σ无关而只取决于   Σ   \,\Sigma\, Σ的边界曲面(或沿   G   \,G\, G内任一闭曲面的曲面积分为零) 的充要条件是:

∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z = 0 \frac{\partial{P}}{\partial{x}}+\frac{\partial{Q}}{\partial{y}}+\frac{\partial{R}}{\partial{z}}=0 xP+yQ+zR=0

    在   G   \,G\, G内恒成立.

(六) 计算思路总结

  步骤
    step 1:绘制曲面.
    step 2:检查被积函数是否可以使用对称奇偶性替代法,简化积分式.
    step 3:识别题目类型
      (1) 曲面不封闭
        若曲面很好计算,直接使用二重积分法或转换投影法求解;
        若曲面不好计算:
          令   P = . . . \,P=... P=... Q = . . . Q=... Q=... R = . . . R=... R=...,并求偏导数.
          若   ∂ Q ∂ x + ∂ P ∂ y + ∂ P ∂ y = 0 \,\frac{\partial{Q}}{\partial{x}}+\frac{\partial{P}}{\partial{y}}+\frac{\partial{P}}{\partial{y}}=0 xQ+yP+yP=0换简单曲面计算.
          若   ∂ Q ∂ x + ∂ P ∂ y + ∂ P ∂ y ≠ 0 \,\frac{\partial{Q}}{\partial{x}}+\frac{\partial{P}}{\partial{y}}+\frac{\partial{P}}{\partial{y}}\neq0 xQ+yP+yP=0补面计算.
      (2) 曲面封闭
        令   P = . . . \,P=... P=... Q = . . . Q=... Q=... R = . . . R=... R=...,并求偏导数.
        若曲面所围区域内无奇点 ,直接使用   Gauss   \,\text{Gauss}\, Gauss计算;
        若曲面所围区域内有奇点,挖洞法换曲面计算.

  注意
    (1)   P \,P P Q Q Q R   R\, R中含有抽象函数   f ( x )   \,f(x)\, f(x),通常在使用   Gauss   \,\text{Gauss}\, Gauss的过程中被抵消掉.
    (2) 若曲面积分出现   f ( x , y , z ) \,f(x,y,z) f(x,y,z),有两种思路:a. 使用转换投影法 (投影到一个面) 计算;b. 转换为第一类曲面积分.

4 第二类曲面积分做法总结

(一) 曲面封闭且无奇点

  特征:题目给的曲面是闭曲面,并且没有分母 (考试奇点通常只会出在分母上).
  思路:直接使用   Gauss \,\text{Gauss} Gauss.

(二) 曲面封闭但内部有奇点

  特征:题目给的曲面是闭曲面,分母可能为   0   \,0\, 0(奇点). 题目通常还满足除奇点外:
div   F ⃗ = 0      ( 即   ∂ P ∂ x = ∂ Q ∂ y = ∂ R ∂ z ) \color{Blue}\text{div}\,\vec{F}=0\;\;(即\,\frac{\partial P}{\partial x}=\frac{\partial Q}{\partial y}=\frac{\partial R}{\partial z}) divF =0(xP=yQ=zR)

  思路挖洞法换个面积分,再使用   Gauss \,\text{Gauss} Gauss.

  挖洞法 ("挖去"   Ω   \,\Omega\, Ω中的奇点,再使用   Gauss \,\text{Gauss} Gauss) 具体做法如下:

     1 o    1^o\; 1o作闭曲面   Σ 0 \,\Sigma_0 Σ0 Σ 0   \Sigma_0\, Σ0必须保证在   Σ   \,\Sigma\, Σ内,且方向与   Σ   \,\Sigma\, Σ同向.

     2 o    2^o\; 2o于是有:
∯ Σ = ∯ Σ + Σ 0 − + ∯ Σ 0 \oiint\limits_\Sigma={\color{Blue}\oiint\limits_{\Sigma+\Sigma_0^-}}+{\color{Red}\oiint\limits_{\Sigma_0}} Σ =Σ+Σ0 +Σ0

     3 o    3^o\; 3o ∯ Σ + Σ 0 −   {\color{Blue}\oiint\limits_{\Sigma+\Sigma_0^-}}\, Σ+Σ0   Σ   \,\Sigma\, Σ   Σ 0   \,\Sigma_0\, Σ0所围积分区域   Ω 1   \,\Omega_1\, Ω1内使用   Gauss   \,\text{Gauss}\, Gauss求解.

      如果题目满足   div   F ⃗ = 0 \,\color{Blue}\text{div}\,\vec{F}=0 divF =0,则 ∯ Σ + Σ 0 − = 0 {\color{Blue}\oiint\limits_{\Sigma+\Sigma_0^-}=0} Σ+Σ0 =0      所以: ∯ Σ = ∯ Σ 0 \oiint\limits_\Sigma={\color{Red}\oiint\limits_{\Sigma_0}} Σ =Σ0       于是计算   Σ   \,\Sigma\, Σ的曲面积分,就转换为计算   Σ 0   \,\Sigma_0\, Σ0的曲面积分,所以说是换曲面.

     4 o    4^o\; 4o ∯ Σ 0   {\color{Red}\oiint\limits_{\Sigma_0}}\, Σ0 使用   Gauss   \,\text{Gauss}\, Gauss或定积分法求解.

    说明
      (1) 一般出题奇点出在分母上(   ( 0 , 0 )   \,(0,0)\, (0,0)点使分式没有意义),比如:
∯ Σ x d y d z + y d z d x + z d x d y ( x 2 + y 2 + z 2 ) 3 2 \oiint\limits_\Sigma\frac{x\text{d}y\text{d}z+y\text{d}z\text{d}x+z\text{d}x\text{d}y}{(x^2+y^2+z^2)^{\frac{3}{2}}} Σ (x2+y2+z2)23xdydz+ydzdx+zdxdy      (2) 如果不能确定奇点是否在   Ω   \,\Omega\, Ω内,就要作如下的分类讨论:
           O ( 0 , 0 , 0 ) ∉ Ω   \,O(0,0,0)\notin \Omega\, O(0,0,0)/Ω,放心使用   Gauss   \,\text{Gauss}\, Gauss求解.
           O ( 0 , 0 , 0 ) ∈ Ω   \,O(0,0,0)\in \Omega\, O(0,0,0)Ω,使用挖洞法换曲面求.
      (3) 为了方便后面使用替代法简化计算, Σ 0   \Sigma_0\, Σ0的选取应该参照分母,并且方向与外侧曲面一致(纯粹是为了计算方便).
        比如上面 (1) 中的曲面积分的   Σ 0   \,\Sigma_0\, Σ0就应该设为: Σ 0 : x 2 + y 2 + z 2 = r 2    ( r > 0 , Σ 0   \Sigma_0:x^2+y^2+z^2=r^2\;(r>0,\Sigma_0\, Σ0:x2+y2+z2=r2(r>0,Σ0   Σ   \,\Sigma\, Σ内且取外侧),
        这样在计算   ∯ Σ 0   \,\oiint\limits_{\Sigma_0}\, Σ0 时分母就能直接替换为   r 2 \,r^2 r2

    下面以一个例题演示计算过程.

    :计算 ∯ Σ x d y d z + y d z d x + z d x d y ( x 2 + y 2 + z 2 ) 3 2 \oiint\limits_\Sigma\frac{x\text{d}y\text{d}z+y\text{d}z\text{d}x+z\text{d}x\text{d}y}{(x^2+y^2+z^2)^{\frac{3}{2}}} Σ (x2+y2+z2)23xdydz+ydzdx+zdxdy,其中   Σ : x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \,\Sigma:\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 Σ:a2x2+b2y2+c2z2=1,法向量指向外侧.
    解:
       1 o    1^o\; 1o找出   P \,P P Q Q Q R R R,并确定它们的偏导数之和为   0 \,0 0
∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z = 0    ( ( x , y , z ) ≠ ( 0 , 0 , 0 ) ) \frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}=0\;\big({\color{Purple}(x,y,z)\neq(0,0,0)}\big) xP+yQ+zR=0((x,y,z)=(0,0,0))       2 o    2^o\; 2o作内侧闭合曲面   Σ 0   \,\Sigma_0\, Σ0,并标明区域:
       令   Σ 0 : x 2 + y 2 + z 2 = r 2    ( r > 0 \,\Sigma_0:x^2+y^2+z^2=r^2\;(r>0 Σ0:x2+y2+z2=r2(r>0 Σ 0   \Sigma_0\, Σ0   Σ   \,\Sigma\, Σ内,   Σ 0   \,\Sigma_0\, Σ0取外侧).
       设   Σ 0   \,\Sigma_0\, Σ0   Σ   \,\Sigma\, Σ所围成的区域为   Ω 1 \,\Omega_1 Ω1 Σ 0   \Sigma_0\, Σ0所围成的单连通区域为   Ω 2 \,\Omega_2 Ω2.
       3 o    3^o\; 3o计算:
由 ∯ Σ + Σ 0 − x d y d z + y d z d x + z d x d y ( x 2 + y 2 + z 2 ) 3 2 = ∭ Ω 1 0 d v = 0   得 由\oiint\limits_{\Sigma+\Sigma_0^-}\frac{x\text{d}y\text{d}z+y\text{d}z\text{d}x+z\text{d}x\text{d}y}{(x^2+y^2+z^2)^{\frac{3}{2}}}=\iiint\limits_{\Omega_1}0\text{d}v=0\,得 Σ+Σ0 (x2+y2+z2)23xdydz+ydzdx+zdxdy=Ω10dv=0 I = ∯ Σ x d y d z + y d z d x + z d x d y ( x 2 + y 2 + z 2 ) 3 2 = ∯ Σ 0 x d y d z + y d z d x + z d x d y ( x 2 + y 2 + z 2 ) 3 2 I=\oiint\limits_{\Sigma}\frac{x\text{d}y\text{d}z+y\text{d}z\text{d}x+z\text{d}x\text{d}y}{(x^2+y^2+z^2)^{\frac{3}{2}}}=\oiint\limits_{\Sigma_0}\frac{x\text{d}y\text{d}z+y\text{d}z\text{d}x+z\text{d}x\text{d}y}{(x^2+y^2+z^2)^{\frac{3}{2}}} I=Σ (x2+y2+z2)23xdydz+ydzdx+zdxdy=Σ0 (x2+y2+z2)23xdydz+ydzdx+zdxdy = 1 r 3 ∬ Σ 0 x d y d z + y d z d x + z d x d y = 3 r 3 ∭ Ω 2 d v = 4 π =\frac{1}{r^3}\iint\limits_{\Sigma_0}x\text{d}y\text{d}z+y\text{d}z\text{d}x+z\text{d}x\text{d}y=\frac{3}{r^3}\iiint\limits_{\Omega_2}\text{d}v=4\pi =r31Σ0xdydz+ydzdx+zdxdy=r33Ω2dv=4π

(三) 曲面不封闭且   div F ⃗ = 0 \,\text{div}\vec{F}=0 divF =0

  特征:题目给的曲面不是闭曲面,并且题目还满足:
div   F ⃗ = 0 \color{Blue}\color{Blue}\text{div}\,\vec{F}=0 divF =0

  思路换曲面,使积分容易计算.

  原理 div   F ⃗ = 0 \text{div}\,\vec{F}=0 divF =0,则通过任何封闭曲面(无奇点在内部)的通量为   0 \,0 0

    由: ∯ Σ 1 + Σ 0 P d y d z + Q d z d x + R d x d y = 0 , ∯ Σ 2 + Σ 0 P d y d z + Q d z d x + R d x d y = 0 \oiint\limits_{\Sigma_1+\Sigma_0}P\text{d}y\text{d}z+Q\text{d}z\text{d}x+R\text{d}x\text{d}y=0,\oiint\limits_{\Sigma_2+\Sigma_0}P\text{d}y\text{d}z+Q\text{d}z\text{d}x+R\text{d}x\text{d}y=0 Σ1+Σ0 Pdydz+Qdzdx+Rdxdy=0Σ2+Σ0 Pdydz+Qdzdx+Rdxdy=0

    于是:
∯ Σ 1 P d y d z + Q d z d x + R d x d y = 0 ∯ Σ 2 P d y d z + Q d z d x + R d x d y \oiint\limits_{\color{Blue}\Sigma_1}P\text{d}y\text{d}z+Q\text{d}z\text{d}x+R\text{d}x\text{d}y=0\oiint\limits_{\color{Red}\Sigma_2}P\text{d}y\text{d}z+Q\text{d}z\text{d}x+R\text{d}x\text{d}y Σ1 Pdydz+Qdzdx+Rdxdy=0Σ2 Pdydz+Qdzdx+Rdxdy

(四) 曲面不封闭且   div F ⃗ ≠ 0 \,\text{div}\vec{F}\neq0 divF =0

  特征:题目给的曲面不是闭曲面,并且题目中:
div F ⃗ ≠ 0 \text{div}\vec{F}\neq0 divF =0

  思路补面,将曲面补为封闭曲面 (添加曲面),再使用   Gauss \,\text{Gauss} Gauss.

    假设曲面   Σ   \,\Sigma\, Σ是一个不封闭的曲面,通过补一个面   Σ 1   \,\Sigma_1\, Σ1即可构成封闭曲面,则:
∬ Σ = ∯ Σ + Σ 1 − ∬ Σ 1 \iint\limits_{\Sigma}=\oiint\limits_{\Sigma+\Sigma_1}-\iint\limits_{\Sigma_1} Σ=Σ+Σ1 Σ1 = ± ∭ Ω ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d v ± ∬ D 1 =\pm\iiint\limits_\Omega{\bigg(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}}+\frac{\partial R}{\partial z}\bigg)\text{d}v\pm\iint\limits_{D_1} =±Ω(xP+yQ+zR)dv±D1

  注意
    (1) 如果曲面本身很好计算,当然直接使用定积分法也可以.
    (2) 不管是使用   Gauss   \,\text{Gauss}\, Gauss的封闭曲面还是补上去的面,转换为重积分时都要注意判断符号.

(五) 由   div   F ⃗ = 0 \,\text{div}\,\vec{F}=0 divF =0,建立微分方程求原函数

  特征:题目第二类曲面积分被积函数出现连续可微的函数   f ( x )   \,f(x)\, f(x),并且   div   F ⃗ = 0 \,\text{div}\,\vec{F}=0 divF =0 (单连通区域   G   \,G\, G内任意封闭曲面的曲面积分为   0 \,0 0).

  思路:根据   ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z = 0 \,\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}=0 xP+yQ+zR=0,建立微分方程即可解出.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值