7届省赛java试题 9: 四平方和

四平方和


四平方和定理,又称为拉格朗日定理:
每个正整数都可以表示为至多4个正整数的平方和。如果把0包括进去,就正好可以表示为4个数的平方和。
比如:
5 = 0^2 + 0^2 + 1^2 + 2^2
7 = 1^2 + 1^2 + 1^2 + 2^2
(^符号表示乘方的意思)
对于一个给定的正整数,可能存在多种平方和的表示法。
要求你对4个数排序:
0 <= a <= b <= c <= d
并对所有的可能表示法按 a,b,c,d 为联合主键升序排列,最后输出第一个表示法。程序输入为一个正整数N (N<5000000)要求输出4个非负整数,按从小到大排序,中间用空格分开。
例如,输入:
5
则程序应该输出:
0 0 1 2
再例如,输入:
12
则程序应该输出:
0 2 2 2
再例如,输入:
773535
则程序应该输出:
1 1 267 838
思路:
这到题就像是凑数一样但肯定不可以全部循环一次,我们首先要找这道题的极限值,从中我们可以看到一个数的平方肯定不可以大于用户输入的值所以我们的极限值就是用户的平方根的值那么我们就循环从0到极限值就可以了我们只需要3层循环就可以了因为第4个数可以用输入值减去前3个已知值,在来判断是否可以被平方如果可以就是我们找的数了。
程序:

a=int(input())
n=int(pow(a,0.5))#找极限值
try:
    for i in range(0,n+1):  #第一个数
        for i1 in range(i,n+1): #第二个数
            if a<i*i+i1*i1:  #减少运算量
                break
            for i2 in range(i1,n+1): #第三个数
                if a<i*i+i1*i1+i2*i2:
                    break 
                c=pow(a-(i*i+i1*i1+i2*i2),0.5) 
                if c==int(c):#第四个数判断是否可以被平方
                    m+=1   #直接让程序报错跳出循环
except:
    print(str(i)+" "+str(i1)+" "+str(i2)+" "+str(int(c)))

禁止转载。仅用于自己学习。对程序错误不负责。

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页