四平方和定理(每个正整数均可表示为4个平方数的和)

定理

四平方和定理证明了任意一个正整数都可以被表示为至多四个正整数的平方和

推论

同时四平方和定理包含了一个更强的结论:当且仅当 n ≠ 4^k* (8m+7) 时,可以被表示为至多三个正整数的平方和。因此,当 n = 4^k* (8m+7) 时,只能被表示为四个正整数的平方和。
判断是否等于 4^k* (8m+7) 的代码

    bool checkAnswer4(int x) {
        while (x % 4 == 0) {
            x /= 4;
        }
        return x % 8 == 7;
    }

参考

leetcode 279.完全平方数

### 实现拉格朗日平方和定理 为了实现拉格朗日平方和定理,可以利用嵌套的`for`循环来遍历所有可能的组合,并通过条件判断找到满足定理条件的个整数。下面是一个具体的Python代码示例: ```python import math def find_four_squares(n): result = [] max_val = int(math.sqrt(n)) for i in range(max_val + 1): for j in range(i, max_val + 1): for k in range(j, max_val + 1): l = math.isqrt(n - (i * i + j * j + k * k)) if i * i + j * j + k * k + l * l == n and l >= k: result.append((i, j, k, l)) # 输出第一个符合条件的结果并退出程序 print(f"{n} can be expressed as the sum of squares: {i}, {j}, {k}, {l}") return True return False if __name__ == "__main__": number = int(input("Enter a positive integer: ")) success = find_four_squares(number) if not success: print(f"No solution found for expressing {number} as four square numbers.") ``` 这段代码定义了一个名为`find_four_squares()` 的函数,它接受一个参数 `n`, 表示要分解成最多个完全平方数的目标正整数[^2]。 在这个例子中,使用了三层显式的`for` 循环迭代变量 `i`, `j`, `k`. 对于每一个 `(i, j, k)` 组合,计算剩余部分是否能构成另一个完全平方数 `l` ,并通过比较确认其有效性。一旦找到了合适的解,则立即返回并打印出来;如果没有找到任何解决方案,在主逻辑外会提示找不到对应的表达方式[^4]。 此外,还应用了 Python 内置库中的 `math.isqrt()`, 它用于获取非负实数的最大不大于自身的整数平方根,从而简化了对最后一个未知量 `l` 的处理过程[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wuming先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值