- 博客(10)
- 资源 (3)
- 收藏
- 关注
原创 无穷小量阶的比较
若:limx→ x0f(x)=0\lim_{x\to\ x_0}f(x)=0limx→ x0f(x)=0limx→ x0g(x)=0\lim_{x\to\ x_0}g(x)=0limx→ x0g(x)=0当:limx→ x0f(x)g(x)=0\lim_{x\to\ x_0}\frac{f(x)}{g(x)}=0limx→ x0g(x)f(x)=0称f(x)当x→x0x\to x_0x→x0时,是g(x)的高阶无穷小量;记作f(x)=o(g(x)) (x→x0x\to x_0x
2023-11-02 18:14:21 1023
原创 微积分 矿爷 --收敛数列的性质(20231026)
an反证法:假设limn→∞analimn→∞anb且a≠b对∀ϵ>0∃N1,当n>N1,都有∣an−a∣ϵ对∀ϵ>0∃N2,当n>N2,都有∣an−b∣ϵ取N=max{N1N2当n>N,∣a−b∣∣a−anan−b∣≤∣a−an∣∣an−b∣2ϵ。
2023-10-26 14:07:50 110
原创 定积分的换元积分法
x=ϕ(t)x=\phi(t)x=ϕ(t)性质1)x=ϕ(t)x=\phi(t)x=ϕ(t)单调(增减)性质2)上下限也变,原变量下限对新变量下限;上对上;∫abf(x)dx=∫αβf(ϕ(t))ϕ(t)′dt\int_a^bf(x)dx=\int_\alpha^\beta f(\phi(t))\phi(t)\prime dt∫abf(x)dx=∫αβf(ϕ(t))ϕ(t)′dt例1:∫08dx1+(x3)→t=x3→t3=x\int_0^8\frac{dx}{1+(\sqrt[3]{x})}
2022-04-20 21:26:49 2159
原创 微积分基本定理 P34
积分上限函数∫abf(x)dx\int_a^bf(x)dx∫abf(x)dx积分上限函数:上限可变;P(x)=∫axf(t)dtx∈[a,b]P(x)=\int_a^xf(t)dt x\in[a,b]P(x)=∫axf(t)dtx∈[a,b]对于P函数,X是变量;定积分的内部而言,t是变量;X是常量;定积分的外部,X是变量;P′(x)=f(x)P\prime (x)=f(x)P′(x)=f(x)1.积分上限是X,求导,直接将X代入被积函数;(∫−1xsint3dt)′=sinx3
2022-04-19 16:55:45 454
原创 抽样分布及其参数-CDA LEVEL 1-P8
CDA LEVEL 1抽样分布及其参数概率分布-正态分布正态分布,mean=median=mode
2021-08-05 15:20:41 318
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人