定积分P32、P33——宋浩

性质

1.曲边梯形面积
分点 a = x 0 < x 1 < x 2 < ⋯ < x n − 1 < x n < b a=x_0<x_1<x_2<\cdots<x_{n-1}<x_n<b a=x0<x1<x2<<xn1<xn<b
Δ x 1 , Δ x 2 , ⋯   , Δ x n \Delta x_1,\Delta x_2,\cdots,\Delta x_n Δx1,Δx2,,Δxn
λ = m a x ( Δ x 1 , ⋯   , Δ x n ) \lambda=max(\Delta x_1,\cdots,\Delta x_n) λ=max(Δx1,,Δxn)
A = Δ x 1 f ( ζ 1 ) + Δ x 2 f ( ζ 2 ) + ⋯ + Δ x n f ( ζ n ) A=\Delta x_1f(\zeta_1)+\Delta x_2f(\zeta_2)+\cdots+\Delta x_nf(\zeta_n) A=Δx1f(ζ1)+Δx2f(ζ2)++Δxnf(ζn)
A = l i m λ → 0 ∑ i = 1 n f ( ζ i ) Δ x i A=lim_{\lambda \to 0}\sum_{i=1}^nf(\zeta_i)\Delta x_i A=limλ0i=1nf(ζi)Δxi

定义

f ( x ) 在 [ a , b ] 上 有 界 , 在 [ a , b ] 上 任 意 插 入 分 点 , 分 成 n 个 小 区 间 , Δ X 1 , Δ x 2 , ⋯   , Δ x n . 任 取 一 点 ζ i f(x)在[a,b]上有界,在[a,b]上任意插入分点,分成n个小区间,\Delta X_1,\Delta x_2,\cdots,\Delta x_n.任取一点\zeta_i f(x)[a,b][a,b]nΔX1,Δx2,,Δxn.ζi
l i m λ → 0 ∑ i = 1 n f ( ζ i ) Δ x i lim_{\lambda \to 0}\sum_{i=1}^nf(\zeta_i)\Delta x_i limλ0i=1nf(ζi)Δxi
λ = m a x ( Δ x 1 , ⋯   , Δ x n ) \lambda=max(\Delta x_1,\cdots,\Delta x_n) λ=max(Δx1,,Δxn)
极限如果存在,则记作为定积分 ∫ a b f ( x ) d x \int_a^bf(x){\rm d}x abf(x)dx

注意:定积分的值只与 f ( x ) [ a , b ] f(x) [a,b] f(x)[a,b]有关;与积分变量无关;
∫ a b f ( x ) d x 等 同 于 ∫ a b f ( t ) d t \int_a^bf(x)dx 等同于\int_a^bf(t)dt abf(x)dxabf(t)dt

什么样的函数可积:
连续,即可积;
有界,有限个间断点,也可积;

几何定义:
f ( x ) ≥ 0 f(x)\geq 0 f(x)0
定积分表示函数与x轴之间的阴影面积;
f ( x ) ≤ 0 f(x)\leq 0 f(x)0
定积分为其形成的面积的相反数,即负数;
f ( x ) 有 正 、 负 f(x)有正、负 f(x)

例题

曲线 y = x 2 y=x^2 y=x2在[0,1]的面积
等分成n份,每份为 1 n \frac{1}{n} n1
∫ 0 1 x 2 d x \int_0^1x^2{\rm d}x 01x2dx
x i = i n , ζ i = i n x_i=\frac{i}{n}, \zeta_i=\frac{i}{n} xi=ni,ζi=ni
∑ i = 1 n f ( ζ i ) Δ x i = ∑ i = 1 n ( i n ) 2 ∗ 1 n = 1 n 3 ∑ i + 1 n i 2 \sum_{i=1}^nf(\zeta_i)\Delta x_i=\sum_{i=1}^n(\frac{i}{n})^2*\frac{1}{n}=\frac{1}{n^3}\sum_{i+1}^ni^2 i=1nf(ζi)Δxi=i=1n(ni)2n1=n31i+1ni2
= 1 n 3 ∗ 1 6 n ( n + 1 ) ( 2 n + 1 ) = n ( n + 1 ) ( 2 n + 1 ) 6 n 3 =\frac{1}{n^3}*\frac{1}{6}n(n+1)(2n+1)=\frac{n(n+1)(2n+1)}{6n^3} =n3161n(n+1)(2n+1)=6n3n(n+1)(2n+1)

n ( n + 1 ) ( 2 n + 1 ) 6 n 3 → ∞ ∞ \frac{n(n+1)(2n+1)}{6n^3} \to \frac{\infty}{\infty} 6n3n(n+1)(2n+1)
无穷比无穷,只看最高次!如果相等,则看系数
n ( n + 1 ) ( 2 n + 1 ) 6 n 3 = 2 6 = 1 3 \frac{n(n+1)(2n+1)}{6n^3} =\frac{2}{6}=\frac{1}{3} 6n3n(n+1)(2n+1)=62=31

定积分的近似计算

矩形法

比原面积小;
每份 Δ x = b − a n \Delta x=\frac{b-a}{n} Δx=nba
b − a n y 1 + b − a n y 2 + ⋯ + b − a n y n = b − a n ( y 1 + y 2 + ⋯ + y n ) \frac{b-a}{n}y_1+\frac{b-a}{n}y_2+\cdots+\frac{b-a}{n}y_{n}=\frac{b-a}{n}(y_1+y_2+\cdots+y_n) nbay1+nbay2++nbayn=nba(y1+y2++yn)

梯形法

比原面积大;
b − a n ( y 0 + y 1 2 + y 1 + y 2 2 + ⋯ + y n − 1 + y n 2 ) = b − a n ( y 0 + y n 2 + y 2 + y 3 + ⋯ + y n − 1 ) \frac{b-a}{n}(\frac{y_0+y_1}{2}+\frac{y_1+y_2}{2}+\cdots+\frac{y_{n-1}+y_n}{2})=\frac{b-a}{n}(\frac{y_0+y_n}{2}+y_2+y_3+\cdots+y_{n-1}) nba(2y0+y1+2y1+y2++2yn1+yn)=nba(2y0+yn+y2+y3++yn1)

抛物线

y = p x 2 + q x + r y=px^2+qx+r y=px2+qx+r

假 设 抛 物 线 经 过 三 点 ( x 1 , y 1 ) ( x 2 , y 2 ) ( x 3 , y 3 ) 假设抛物线经过三点(x_1,y_1) (x_2,y_2) (x_3,y_3) 线(x1,y1)(x2,y2)(x3,y3)
可求解出q、r
难度很大,跳过;

定积分的性质

1 ) b = a , ∫ a a f ( x ) = 0 1) b=a, \int_a^af(x)=0 1)b=a,aaf(x)=0
2 ) ∫ a b f ( x ) d x = − ∫ a b f ( x ) d x 2) \int_a^bf(x)dx=-\int_a^bf(x)dx 2)abf(x)dx=abf(x)dx

性质1: ∫ a b ( α f ( x ) + β g ( x ) ) d x = α ∫ a b f ( x ) d x + β ∫ a b g ( x ) d x \int_a^b(\alpha f(x)+\beta g(x))dx=\alpha \int_a^bf(x)dx+\beta \int_a^bg(x)dx ab(αf(x)+βg(x))dx=αabf(x)dx+βabg(x)dx

性质2:
a < c < b a<c<b a<c<b
∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int _a^bf(x)dx=\int_a^cf(x)dx+\int_c^bf(x)dx abf(x)dx=acf(x)dx+cbf(x)dx

a < b < c a<b<c a<b<c
∫ a b f ( x ) d x = ∫ a c f ( x ) d x − ∫ b c f ( x ) d x \int_a^bf(x)dx=\int_a^cf(x)dx-\int_b^cf(x)dx abf(x)dx=acf(x)dxbcf(x)dx
∫ b c f ( x ) d x = − ∫ c b f ( x ) d x \int_b^cf(x)dx=-\int_c^bf(x)dx bcf(x)dx=cbf(x)dx
∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int _a^bf(x)dx=\int_a^cf(x)dx+\int_c^bf(x)dx abf(x)dx=acf(x)dx+cbf(x)dx

性质3
f ( x ) ≡ 1 f(x)\equiv1 f(x)1
∫ a b 1 d x = b − a \int_a^b1dx=b-a ab1dx=ba

∫ a b k d x = k ( b − a ) \int_a^bkdx=k(b-a) abkdx=k(ba)

性质4:
f ( x ) ≥ 0 f(x)\geq0 f(x)0
∫ a b f ( x ) d x ≥ 0 \int_a^bf(x)dx\geq0 abf(x)dx0

推1:
f ( x ) ≤ g ( x ) f(x)\leq g(x) f(x)g(x) → \to ∫ a b f ( x ) d x ≤ ∫ a b g ( x ) d x \int_a^bf(x)dx\leq \int_a^b g(x)dx abf(x)dxabg(x)dx

推2:
∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x |\int_a^bf(x)dx|\leq \int_a^b|f(x)|dx abf(x)dxabf(x)dx
(积分有正负之分)

性质5:
M,m 最大、最小
m ( b − a ) ≤ ∫ a b f ( x ) d x ≤ M ( b − a ) m(b-a)\leq \int_a^bf(x)dx\leq M(b-a) m(ba)abf(x)dxM(ba)

性质6:定积分中值定理
f ( x ) 连 续 f(x)连续 f(x) ∃ ζ ∈ [ a , b ] \exists \zeta \in[a,b] ζ[a,b], f ( ζ ) 为 平 均 值 f(\zeta)为平均值 f(ζ)
∫ a b f ( x ) d x = f ( ζ ) ( b − a ) \int_a^bf(x)dx=f(\zeta)(b-a) abf(x)dx=f(ζ)(ba)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gsd?

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值