性质
1.曲边梯形面积
分点
a
=
x
0
<
x
1
<
x
2
<
⋯
<
x
n
−
1
<
x
n
<
b
a=x_0<x_1<x_2<\cdots<x_{n-1}<x_n<b
a=x0<x1<x2<⋯<xn−1<xn<b
Δ
x
1
,
Δ
x
2
,
⋯
,
Δ
x
n
\Delta x_1,\Delta x_2,\cdots,\Delta x_n
Δx1,Δx2,⋯,Δxn
λ
=
m
a
x
(
Δ
x
1
,
⋯
,
Δ
x
n
)
\lambda=max(\Delta x_1,\cdots,\Delta x_n)
λ=max(Δx1,⋯,Δxn)
A
=
Δ
x
1
f
(
ζ
1
)
+
Δ
x
2
f
(
ζ
2
)
+
⋯
+
Δ
x
n
f
(
ζ
n
)
A=\Delta x_1f(\zeta_1)+\Delta x_2f(\zeta_2)+\cdots+\Delta x_nf(\zeta_n)
A=Δx1f(ζ1)+Δx2f(ζ2)+⋯+Δxnf(ζn)
A
=
l
i
m
λ
→
0
∑
i
=
1
n
f
(
ζ
i
)
Δ
x
i
A=lim_{\lambda \to 0}\sum_{i=1}^nf(\zeta_i)\Delta x_i
A=limλ→0i=1∑nf(ζi)Δxi
定义
f
(
x
)
在
[
a
,
b
]
上
有
界
,
在
[
a
,
b
]
上
任
意
插
入
分
点
,
分
成
n
个
小
区
间
,
Δ
X
1
,
Δ
x
2
,
⋯
,
Δ
x
n
.
任
取
一
点
ζ
i
f(x)在[a,b]上有界,在[a,b]上任意插入分点,分成n个小区间,\Delta X_1,\Delta x_2,\cdots,\Delta x_n.任取一点\zeta_i
f(x)在[a,b]上有界,在[a,b]上任意插入分点,分成n个小区间,ΔX1,Δx2,⋯,Δxn.任取一点ζi
l
i
m
λ
→
0
∑
i
=
1
n
f
(
ζ
i
)
Δ
x
i
lim_{\lambda \to 0}\sum_{i=1}^nf(\zeta_i)\Delta x_i
limλ→0∑i=1nf(ζi)Δxi
λ
=
m
a
x
(
Δ
x
1
,
⋯
,
Δ
x
n
)
\lambda=max(\Delta x_1,\cdots,\Delta x_n)
λ=max(Δx1,⋯,Δxn)
极限如果存在,则记作为定积分
∫
a
b
f
(
x
)
d
x
\int_a^bf(x){\rm d}x
∫abf(x)dx
注意:定积分的值只与
f
(
x
)
[
a
,
b
]
f(x) [a,b]
f(x)[a,b]有关;与积分变量无关;
∫
a
b
f
(
x
)
d
x
等
同
于
∫
a
b
f
(
t
)
d
t
\int_a^bf(x)dx 等同于\int_a^bf(t)dt
∫abf(x)dx等同于∫abf(t)dt
什么样的函数可积:
连续,即可积;
有界,有限个间断点,也可积;
几何定义:
f
(
x
)
≥
0
f(x)\geq 0
f(x)≥0
定积分表示函数与x轴之间的阴影面积;
f
(
x
)
≤
0
f(x)\leq 0
f(x)≤0
定积分为其形成的面积的相反数,即负数;
f
(
x
)
有
正
、
负
f(x)有正、负
f(x)有正、负
例题
曲线
y
=
x
2
y=x^2
y=x2在[0,1]的面积
等分成n份,每份为
1
n
\frac{1}{n}
n1
∫
0
1
x
2
d
x
\int_0^1x^2{\rm d}x
∫01x2dx
x
i
=
i
n
,
ζ
i
=
i
n
x_i=\frac{i}{n}, \zeta_i=\frac{i}{n}
xi=ni,ζi=ni
∑
i
=
1
n
f
(
ζ
i
)
Δ
x
i
=
∑
i
=
1
n
(
i
n
)
2
∗
1
n
=
1
n
3
∑
i
+
1
n
i
2
\sum_{i=1}^nf(\zeta_i)\Delta x_i=\sum_{i=1}^n(\frac{i}{n})^2*\frac{1}{n}=\frac{1}{n^3}\sum_{i+1}^ni^2
i=1∑nf(ζi)Δxi=i=1∑n(ni)2∗n1=n31i+1∑ni2
=
1
n
3
∗
1
6
n
(
n
+
1
)
(
2
n
+
1
)
=
n
(
n
+
1
)
(
2
n
+
1
)
6
n
3
=\frac{1}{n^3}*\frac{1}{6}n(n+1)(2n+1)=\frac{n(n+1)(2n+1)}{6n^3}
=n31∗61n(n+1)(2n+1)=6n3n(n+1)(2n+1)
n
(
n
+
1
)
(
2
n
+
1
)
6
n
3
→
∞
∞
\frac{n(n+1)(2n+1)}{6n^3} \to \frac{\infty}{\infty}
6n3n(n+1)(2n+1)→∞∞
无穷比无穷,只看最高次!如果相等,则看系数
n
(
n
+
1
)
(
2
n
+
1
)
6
n
3
=
2
6
=
1
3
\frac{n(n+1)(2n+1)}{6n^3} =\frac{2}{6}=\frac{1}{3}
6n3n(n+1)(2n+1)=62=31
定积分的近似计算
矩形法
比原面积小;
每份
Δ
x
=
b
−
a
n
\Delta x=\frac{b-a}{n}
Δx=nb−a
b
−
a
n
y
1
+
b
−
a
n
y
2
+
⋯
+
b
−
a
n
y
n
=
b
−
a
n
(
y
1
+
y
2
+
⋯
+
y
n
)
\frac{b-a}{n}y_1+\frac{b-a}{n}y_2+\cdots+\frac{b-a}{n}y_{n}=\frac{b-a}{n}(y_1+y_2+\cdots+y_n)
nb−ay1+nb−ay2+⋯+nb−ayn=nb−a(y1+y2+⋯+yn)
梯形法
比原面积大;
b
−
a
n
(
y
0
+
y
1
2
+
y
1
+
y
2
2
+
⋯
+
y
n
−
1
+
y
n
2
)
=
b
−
a
n
(
y
0
+
y
n
2
+
y
2
+
y
3
+
⋯
+
y
n
−
1
)
\frac{b-a}{n}(\frac{y_0+y_1}{2}+\frac{y_1+y_2}{2}+\cdots+\frac{y_{n-1}+y_n}{2})=\frac{b-a}{n}(\frac{y_0+y_n}{2}+y_2+y_3+\cdots+y_{n-1})
nb−a(2y0+y1+2y1+y2+⋯+2yn−1+yn)=nb−a(2y0+yn+y2+y3+⋯+yn−1)
抛物线
y = p x 2 + q x + r y=px^2+qx+r y=px2+qx+r
假
设
抛
物
线
经
过
三
点
(
x
1
,
y
1
)
(
x
2
,
y
2
)
(
x
3
,
y
3
)
假设抛物线经过三点(x_1,y_1) (x_2,y_2) (x_3,y_3)
假设抛物线经过三点(x1,y1)(x2,y2)(x3,y3)
可求解出q、r
难度很大,跳过;
定积分的性质
1
)
b
=
a
,
∫
a
a
f
(
x
)
=
0
1) b=a, \int_a^af(x)=0
1)b=a,∫aaf(x)=0
2
)
∫
a
b
f
(
x
)
d
x
=
−
∫
a
b
f
(
x
)
d
x
2) \int_a^bf(x)dx=-\int_a^bf(x)dx
2)∫abf(x)dx=−∫abf(x)dx
性质1: ∫ a b ( α f ( x ) + β g ( x ) ) d x = α ∫ a b f ( x ) d x + β ∫ a b g ( x ) d x \int_a^b(\alpha f(x)+\beta g(x))dx=\alpha \int_a^bf(x)dx+\beta \int_a^bg(x)dx ∫ab(αf(x)+βg(x))dx=α∫abf(x)dx+β∫abg(x)dx
性质2:
a
<
c
<
b
a<c<b
a<c<b
∫
a
b
f
(
x
)
d
x
=
∫
a
c
f
(
x
)
d
x
+
∫
c
b
f
(
x
)
d
x
\int _a^bf(x)dx=\int_a^cf(x)dx+\int_c^bf(x)dx
∫abf(x)dx=∫acf(x)dx+∫cbf(x)dx
a
<
b
<
c
a<b<c
a<b<c
∫
a
b
f
(
x
)
d
x
=
∫
a
c
f
(
x
)
d
x
−
∫
b
c
f
(
x
)
d
x
\int_a^bf(x)dx=\int_a^cf(x)dx-\int_b^cf(x)dx
∫abf(x)dx=∫acf(x)dx−∫bcf(x)dx
∫
b
c
f
(
x
)
d
x
=
−
∫
c
b
f
(
x
)
d
x
\int_b^cf(x)dx=-\int_c^bf(x)dx
∫bcf(x)dx=−∫cbf(x)dx
∫
a
b
f
(
x
)
d
x
=
∫
a
c
f
(
x
)
d
x
+
∫
c
b
f
(
x
)
d
x
\int _a^bf(x)dx=\int_a^cf(x)dx+\int_c^bf(x)dx
∫abf(x)dx=∫acf(x)dx+∫cbf(x)dx
性质3
f
(
x
)
≡
1
f(x)\equiv1
f(x)≡1
∫
a
b
1
d
x
=
b
−
a
\int_a^b1dx=b-a
∫ab1dx=b−a
∫ a b k d x = k ( b − a ) \int_a^bkdx=k(b-a) ∫abkdx=k(b−a)
性质4:
f
(
x
)
≥
0
f(x)\geq0
f(x)≥0
∫
a
b
f
(
x
)
d
x
≥
0
\int_a^bf(x)dx\geq0
∫abf(x)dx≥0
推1:
f
(
x
)
≤
g
(
x
)
f(x)\leq g(x)
f(x)≤g(x)
→
\to
→
∫
a
b
f
(
x
)
d
x
≤
∫
a
b
g
(
x
)
d
x
\int_a^bf(x)dx\leq \int_a^b g(x)dx
∫abf(x)dx≤∫abg(x)dx
推2:
∣
∫
a
b
f
(
x
)
d
x
∣
≤
∫
a
b
∣
f
(
x
)
∣
d
x
|\int_a^bf(x)dx|\leq \int_a^b|f(x)|dx
∣∫abf(x)dx∣≤∫ab∣f(x)∣dx
(积分有正负之分)
性质5:
M,m 最大、最小
m
(
b
−
a
)
≤
∫
a
b
f
(
x
)
d
x
≤
M
(
b
−
a
)
m(b-a)\leq \int_a^bf(x)dx\leq M(b-a)
m(b−a)≤∫abf(x)dx≤M(b−a)
性质6:定积分中值定理
f
(
x
)
连
续
f(x)连续
f(x)连续,
∃
ζ
∈
[
a
,
b
]
\exists \zeta \in[a,b]
∃ζ∈[a,b],
f
(
ζ
)
为
平
均
值
f(\zeta)为平均值
f(ζ)为平均值
∫
a
b
f
(
x
)
d
x
=
f
(
ζ
)
(
b
−
a
)
\int_a^bf(x)dx=f(\zeta)(b-a)
∫abf(x)dx=f(ζ)(b−a)