微积分基本定理 P34

积分上限函数

∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx
在这里插入图片描述
积分上限函数:上限可变;
P ( x ) = ∫ a x f ( t ) d t x ∈ [ a , b ] P(x)=\int_a^xf(t)dt x\in[a,b] P(x)=axf(t)dtx[a,b]
对于P函数,X是变量;
定积分的内部而言,t是变量;X是常量;
定积分的外部,X是变量;

P ′ ( x ) = f ( x ) P\prime (x)=f(x) P(x)=f(x)

1.积分上限是X,求导,直接将X代入被积函数;
( ∫ − 1 x sin ⁡ t 3 d t ) ′ = sin ⁡ x 3 (\int_{-1}^x\sin t ^3dt)\prime=\sin x^3 (1xsint3dt)=sinx3

( ∫ x 5 cos ⁡ t d t ) ′ = − ( ∫ 5 x cos ⁡ t d t ) ′ = − cos ⁡ x (\int_x^5\cos tdt)\prime=-(\int_5^x\cos tdt)\prime=-\cos x (x5costdt)=(5xcostdt)=cosx
y = ∫ 1 x 2 sin ⁡ t d t y=\int_1^{x^2}\sin tdt y=1x2sintdt → \to u = x 2 u=x^2 u=x2 → \to ∫ 1 u sin ⁡ t d t \int_1^u\sin tdt 1usintdt
(复合函数求导——链式法则)
y = f ( u ) , u = g ( t ) , t = h ( u ) y=f(u),u=g(t),t=h(u) y=f(u),u=g(t),t=h(u) → \to d y d u ∗ d u d t ∗ d t d w \frac{dy}{du}*\frac{du}{dt}*\frac{dt}{dw} dudydtdudwdt
d y d x = d y d u ∗ d u d x = sin ⁡ u ∗ 2 x \frac{dy}{dx}=\frac{dy}{du}*\frac{du}{dx}=\sin u*2x dxdy=dudydxdu=sinu2x

[ ∫ h ( x ) g ( x ) f ( t ) d t ] ′ [\int_{h(x)}^{g(x)}f(t)dt]\prime [h(x)g(x)f(t)dt]

[ ∫ h ( x ) c f ( t ) d t + ∫ c g ( x ) f ( t ) d t ] ′ [\int_{h(x)}^cf(t)dt+\int_c^{g(x)}f(t)dt]\prime [h(x)cf(t)dt+cg(x)f(t)dt] → \to f(g(x))g ′ \prime (x)-f(h(x))h ′ \prime (x)

lim ⁡ x → 0 ∫ 0 x arctan ⁡ t d t x 2 \lim_{x\to 0}\frac{\int_0^x\arctan tdt}{x^2} limx0x20xarctantdt → \to 0 0 \frac{0}{0} 00 → \to 洛贝达法则 → \to lim ⁡ x → 0 arctan ⁡ x 2 x = 1 1 + x 2 2 ∣ x → 0 \lim_{x\to 0}\frac{\arctan x}{2x}=\frac{\frac{1}{1+x^2}}{2}|_{x \to 0} limx02xarctanx=21+x21x0

lim ⁡ x → 0 ∫ 0 x ∫ 0 u 2 arctan ⁡ ( 1 + t ) d t d u x ( 1 − cos ⁡ x ) \lim_{x \to 0}\frac{\int_0^x\int_0^{u^2}\arctan (1+t)dtdu}{x(1-\cos x)} x0limx(1cosx)0x0u2arctan(1+t)dtdu → \to 0 0 \frac{0}{0} 00 → \to ∫ 0 x 2 arctan ⁡ ( 1 + t ) d t 1 − cos ⁡ x + x sin ⁡ x \frac{\int_0^{x^2}\arctan (1+t)dt}{1-\cos x+x\sin x} 1cosx+xsinx0x2arctan(1+t)dt
→ \to
lim ⁡ x → 0 2 x ∗ arctan ⁡ ( 1 + x 2 ) sin ⁡ x + sin ⁡ x + x cos ⁡ x \lim_{x \to 0}\frac{2x*\arctan(1+x^2)}{\sin x+\sin x+x\cos x} x0limsinx+sinx+xcosx2xarctan(1+x2)

( ∫ 0 x sin ⁡ u d u ) ′ = sin ⁡ x (\int_0^x\sin u du)\prime=\sin x (0xsinudu)=sinx

牛顿-莱布尼茨公式

∫ a b f ( x ) d x = F ( x ) ∣ a b = F ( b ) − F ( a ) \int_a^bf(x)dx=F(x)|_a^b=F(b)-F(a) abf(x)dx=F(x)ab=F(b)F(a)

定积分与不定积分联系起来;


∫ 0 1 2 e 2 x d x = 1 2 e 2 x ∣ 0 1 2 = 1 2 e − 1 2 \int_0^{\frac{1}{2}}e^{2x}dx=\frac{1}{2}e^{2x}|_0^{\frac{1}{2}}=\frac{1}{2}e-\frac{1}{2} 021e2xdx=21e2x021=21e21

∫ − 1 3 ∣ 2 − x ∣ d x → ∫ − 1 2 ( 2 − x ) d x + ∫ 2 3 ( x − 2 ) d x \int_{-1}^3|2-x|dx \to \int_{-1}^2(2-x)dx+\int_2^3(x-2)dx 132xdx12(2x)dx+23(x2)dx


  1. f ( x ) = 2 x ( 0 ≤ x ≤ 1 ) f(x)=2x (0\leq x \leq 1) f(x)=2x(0x1)
    f ( x ) = 2 + x ( 1 ≤ x ≤ 2 ) f(x)=2+x (1\leq x\leq 2) f(x)=2+x(1x2)
    求 P ( x ) = ∫ 0 x f ( t ) d t 在 [ 0 , 2 ] 上 函 数 的 表 达 式 求P(x)=\int_0^xf(t)dt 在[0,2]上函数的表达式 P(x)=0xf(t)dt[0,2]

解:假设 x ∈ [ 0 , 1 ] x \in [0,1] x[0,1]
P ( x ) = ∫ 0 x f ( t ) d t = ∫ 0 x 2 t d t = t 2 ∣ 0 x = x 2 P(x)=\int_0^xf(t)dt=\int_0^x2tdt=t^2|_0^x=x^2 P(x)=0xf(t)dt=0x2tdt=t20x=x2
x ∈ ( 1 , 2 ] x\in(1,2] x(1,2]
P ( x ) = ∫ 0 x f ( t ) d t = ∫ 0 1 2 t d t + ∫ 1 x ( 2 + t ) d t P(x)=\int_0^xf(t)dt=\int_0^12tdt+\int_1^x(2+t)dt P(x)=0xf(t)dt=012tdt+1x(2+t)dt

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gsd?

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值