电磁场与仿真软件(10)

这篇博客探讨了TM波斜向入射和垂直入射到介电物质时的电磁波行为。通过边界条件和电磁场的连续性,推导出入射波、反射波和透射波的表达式,并阐述了全反射条件,即当入射角大于临界角时,无透射波。接着,引入布鲁斯特角的概念,解释了在这个特定角度入射时,反射波消除的现象,这与介电物质表面分子的振荡角度有关。文章还讨论了布鲁斯特角的物理意义和实际应用。
摘要由CSDN通过智能技术生成

这篇会写TM波斜向入射介电物质

 和垂直入射一样,先写出入射波,反射波,透射波的表达式,(推导见“电磁场与仿真软件(8)“”) 

入射波:

\tilde{H_{i}}(\vec{R})=\vec{a}_{y}E_{i0}/\eta _{1}*e^{-ik_{1}(xsin\theta_{i} +zcos \theta_{i})}

\tilde{E_{i}}(\vec{R})=E_{i0}(\vec{a}_{x}cos\theta_{i} -\vec{a}_{z}sin \theta_{i})*e^{-ik_{1}(xcos\theta_{i} +zcos \theta_{i})}

反射波:

\tilde{H_{r}}(\vec{R})=-\vec{a}_{y}E_{r0}/\eta _{1}*e^{-ik_{1}(xsin\theta_{r} -zcos \theta_{r})}

\tilde{E_{r}}(\vec{R})=E_{r0}(\vec{a}_{x}cos\theta_{r} +\vec{a}_{z}sin \theta_{r})*e^{-ik_{1}(xcos\theta_{i} -zcos \theta_{r})}

透射波:

\tilde{H_{t}}(\vec{R})=\vec{a}_{y}E_{t0}/\eta _{2}*e^{-ik_{2}(xsin\theta_{t} +zcos \theta_{t})}

\tilde{E_{t}}(\vec{R})=E_{t0}(\vec{a}_{x}cos\theta_{t} -\vec{a}_{z}sin \theta_{i})*e^{-ik_{2}(xcos\theta_{t} +zcos \theta_{t})}

接下来写出边界条件,如上一篇所写的, E和H在(z=0处)切向是连续的:

E_{i0}cos \theta_{i}*e^{-ik_{1}xsin\theta_{i}}+E_{r0}cos \theta_{r}*e^{-ik_{1}xsin\theta_{r}}=E_{t0}cos \theta_{t}*e^{-ik_{2}xsin\theta_{t}}

E_{i0}/\eta _{1}*e^{-ik_{1}xsin\theta_{i}}-E_{r0}/\eta _{1}*e^{-ik_{1}xsin\theta_{r}}=E_{t0}/\eta _{2}*e^{-ik_{2}xsin\theta_{t}}

有边界条件 可以得到:

k_{1}sin\theta _{i}=k_{1}sin\theta _{r}=k_{2}sin\theta _{t}

E_{i0}cos\theta _{i}+E_{r0}cos\theta _{i}=E_{t0}cos\theta _{r}

E_{i0}/\eta _{1}-E_{r0}/\eta _{1}=E_{t0}/\eta _{2}

这边有4个未知数 \theta _{r},\theta _{t},E_{r0}, E_{t0}  4个方程 ,我们就可以得到所有的解,分析这些解:

1. 全反射

\theta _{i}=\theta _{r}, k_{1}sin\theta _{i}=k_{2}sin\theta _{t} 或者 折射率表示: n_{1}sin\theta _{i}=n_{2}sin\theta _{t}   -就是斯涅耳定理

因为k=\omega \sqrt{\mu \varepsilon }, n=\sqrt{\varepsilon }  一般材料都不是铁磁材料, \mu都差不多的.

n_{1}>n_{2}sin\theta _{c}=n_{2}/n_{1} 当入射角>\theta _{c}时, 就会发生全反射,这时无透射波,电磁波无法进入材料2;

也就是在z方向,信号会沿边界迅速消散,我们称为消散波;

2. 布鲁斯特角:

这边用另外2个等式:

E_{i0}cos\theta _{i}+E_{r0}cos\theta _{i}=E_{t0}cos\theta _{t}

E_{i0}/k _{1}-E_{r0}/k _{1}=E_{t0}/k _{2}   即 E_{i0}/n _{1}-E_{r0}/n _{1}=E_{t0}/n _{2}

得到\Gamma _{tm}=E_{r0}/E_{i0}=(n_{2}cos\theta _{i}-n_{1}cos\theta _{t})/(n_{1}cos\theta _{i}+n_{2}cos\theta _{t})  

代入n_{2}=(sin\theta _{i}/sin\theta _{t})*n_{1}  得到: 

\Gamma _{tm}=tan(\theta _{i}-\theta _{t})/tan(\theta _{i}+\theta _{t})

如果\theta _{i}=\theta _{t}, 那么\Gamma _{tm}=0  -->也就是材料1和材料2是一样的,不会存在反射现象;

如果\theta _{i}+\theta _{t}=\pi /4  tan(\theta_{i}+\theta_{t})-->\infty那么\Gamma _{tm}=0 ,也不会存在反射现象. 

n_{1}sin\theta _{i}=n_{2}sin\theta _{t}=n_{2}sin(\pi /4 -\theta _{i})=n_{2}cos\theta _{i}

所以当tan\theta _{i}=n_{2}/n_{1} 也不会产生反射,这时候的入射角就被称维布鲁斯特角.(这个角度入射的电磁波不会产生反射,完全投射)

这个现象还可以从另外一个角度去理解: 

如下图, 入射的电磁波造成介电物质表面分子diploe的振荡, 振荡的角度取决于入射电磁波的角度.如果电磁波的反射角和振荡角正好在一条直线上, 在传播方向是不存在电场的(因为电场方向和传播方向一定是垂直的,如下图所示) 类似一个偶极子天线. 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Walt Lu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值