常见概率分布及图像

本文介绍了概率论中的几种基本分布,包括离散概率分布的伯努利分布、二项分布和泊松分布,以及连续概率分布的均匀分布、指数分布、正态分布、卡方分布和Student分布。这些分布在统计学和数据分析中扮演着重要角色,是理解和应用概率理论的基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概率分布

1 离散概率分布

1.1 伯努利分布

随机变量 X X X仅取两个值, X = 0 , 1 X=0,1 X=0,1,概率质量函数(PMF)为

P { X = 1 } = p ; P { X = 0 } = 1 − p , p ∈ [ 0 , 1 ] P\{X=1\}=p; P\{X=0\}=1-p,p\in[0,1] P{X=1}=p;P{X=0}=1p,p[0,1]

伯努利累积概率分布(CMF) F ( X ≤ k ) F(X \le k) F(Xk)


1.2 二项分布

随机变量服从参数 n , p n,p n,p的二项分布,记作 X ∼ B ( n , p ) X\sim B(n,p) XB(n,p),PMF函数为
P { X = k } = ( k n ) p k ( 1 − p ) n − k , k = 0 , 1 , ⋯ n P\{X=k\}=\left(\begin{array}{c} k \\ n \end{array}\right) p^k(1-p)^{n-k} ,k=0,1, \cdots n P{X=k}=(kn)pk(1p)nk,k=0,1,n
其中 ( n k ) = n ! k ! ( n − k ) ! \left(\begin{array}{l} n \\ k \end{array}\right)=\frac{n !}{k !(n-k) !} (nk)=k!(nk)!n!是二项式系数。

二项分布CMF:


1.3 泊松分布

随机变量 X X X服从参数 λ \lambda λ,PMF为
P ( X = k ) = λ k k ! e − λ , k = 0 , 1 , ⋯ P(X=k)=\frac{\lambda^k}{k !} e^{-\lambda}, k=0,1, \cdots P(X=k)=k!λkeλ,k=0,1,

对应的CMF为


2 连续概率分布

2.1 均匀分布

连续型随机变量 X X X服从均匀分布记作 X ∼ U ( a , b ) X\sim U(a,b) XU(a,b),概率密度函数(PDF)为
f ( x ) = { 1 / ( b − a ) x ∈ [ a , b ] 0 e l s e f(x) = \left\{\begin{array}{l} 1/(b-a)& x\in[a,b] \\ 0&else \end{array}\right. f(x)={1/(ba)0x[a,b]else

均匀分布的累积概率分布为
F ( x ) = { 0 , x ≤ a x − a b − a , a ≤ x ≤ b 1 , x > b F(x)=\left\{\begin{array}{l} 0, x\le a \\ \dfrac{x-a}{b-a}, a\leq x \leq b \\ 1, x>b \end{array}\right. F(x)= 0,xabaxa,axb1,x>b


2.2 指数分布

连续型随机变量 X X X服从均匀分布记作 X ∼ E ( λ ) X\sim E(\lambda) XE(λ),概率密度函数(PDF)为
f ( x ) = { λ e − λ x x > 0 0 x ⩽ 0 f(x)=\left\{\begin{array}{l} \lambda e^{-\lambda x} &x>0 \\ 0&x \leqslant 0 \end{array}\right. f(x)={λeλx0x>0x0

指数分布的累积概率分布为
P { X ≤ x } = F ( x ) = 1 − e − λ x , x > 0 P\{X \leq x\}=F(x)=1-e^{-\lambda x}, x>0 P{Xx}=F(x)=1eλx,x>0


2.3 正态分布

连续型随机变量 X X X服从正态分布记作 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2),概率密度函数(PDF)为
f ( x ) = 1 2 π σ exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^2}{2 \sigma^2}\right) f(x)=2π σ1exp(2σ2(xμ)2)

正态分布累积概率分布不存在初等函数,定义 F ( X ≤ k ) F(X\le k) F(Xk)的概率为

2.4 卡方分布

N N N个相互独立随机变量服从标准正态分布,则 N N N个随机变量的平方和服从 χ 2 \chi^2 χ2分布,记作 X ∼ χ 2 ( n ) X\sim\chi^2(n) Xχ2(n), n n n为自由度。概率密度函数为
f k ( x ) = ( 1 / 2 ) k / 2 Γ ( k / 2 ) x k / 2 − 1 e − x / 2 , x > 0 f_k(x)=\frac{(1 / 2)^{k / 2}}{\Gamma(k / 2)} x^{k / 2-1} e^{-x / 2},x>0 fk(x)=Γ(k/2)(1/2)k/2xk/21ex/2,x>0
Γ \Gamma Γ表示gamma函数。 k k k为自由度。

卡方分布累积概率分布为
F k ( x ) = γ ( k / 2 , x / 2 ) Γ ( k / 2 ) F_k(x)=\frac{\gamma(k / 2, x / 2)}{\Gamma(k / 2)} Fk(x)=Γ(k/2)γ(k/2,x/2)
其中 γ ( a , b ) \gamma(a,b) γ(a,b)表示不完全gamma函数。


2.5 Student分布

随机变量 X X X服从标准正态分布, Y Y Y服从 χ 2 ( n ) \chi^2(n) χ2(n),则随机变量 Z = X Y / n Z = \dfrac{X}{\sqrt{Y/n}} Z=Y/n X服从 t t t分布,概率密度函数为
f Z ( x ) = Γ ⁡ ( n + 1 2 ) n π Γ ⁡ ( n 2 ) ( 1 + x 2 n ) − n + 1 2 f_Z(x)=\frac{\operatorname{\Gamma}\left(\frac{n+1}{2}\right)}{\sqrt{n \pi} \operatorname{\Gamma}\left(\frac{n}{2}\right)}\left(1+\frac{x^2}{n}\right)^{-\frac{n+1}{2}} fZ(x)= Γ(2n)Γ(2n+1)(1+nx2)2n+1

n → ∞ n\to\infty n,T分布与正态分布基本一致。


3.5 F分布

随机变量 X , Y X,Y X,Y分别服从 χ 2 ( n 1 ) \chi^2(n_1) χ2(n1) χ 2 ( n 2 ) \chi^2(n_2) χ2(n2),则随机变量 Z = χ 2 ( n 1 ) / n 1 χ 2 ( n 2 ) / n 2 Z = \dfrac{\chi^2(n_1)/n_1}{\chi^2(n_2)/n_2} Z=χ2(n2)/n2χ2(n1)/n1服从自由度为 ( n 1 , n 2 ) (n_1,n_2) (n1,n2) F F F分布,其pdf为
f ( z ) = Γ ( n 1 + n 2 2 ) ( n 1 n 2 ) n 1 2 z n 1 2 − 1 Γ ( n 1 2 ) Γ ( n 2 2 ) [ 1 + n 1 z n 2 ] n 1 + n 2 2 z > 0 f(z)=\frac{\Gamma\left(\frac{n_1+n_2}{2}\right)\left(\frac{n_1}{n_2}\right)^{\frac{n_1}{2}} z^{\frac{n_1}{2}-1}}{\Gamma\left(\frac{n_1}{2}\right) \Gamma\left(\frac{n_2}{2}\right)\left[1+\frac{n_1 z}{n_2}\right]^{\frac{n_1+n_2}{2}}} \quad z>0 f(z)=Γ(2n1)Γ(2n2)[1+n2n1z]2n1+n2Γ(2n1+n2)(n2n1)2n1z2n11z>0



-END-
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值