变分法与固定端点动态优化

变分法与固定端点动态优化

目录

高级宏观经济学涉及到动态优化问题,解决动态优化问题的方法包括变分法(欧拉方程),最优控制理论(变分法推广)以及动态规划(贝尔曼方程)。本文简单介绍了经济学中动态优化的事实、动态优化的类型以及固定端点类型的动态优化问题。预备知识:高等数学与最优化理论

1经济学中动态优化事实

1.1 Ramsey(1928)最优储蓄

问题1:设个人效用函数为 U = u ( c ) − v ( L ) U = u(c)-v(L) U=u(c)v(L) c c c为消费, L L L为劳动供给。 k k k为个人财富水平, f ( k , L ) f(k,L) f(k,L)表示 k k k水平财富同时拥有 L L L劳动供给所得到的收入水平,它决定了财富水平的增长率 k ˙ \dot k k˙。如果人的生命无限长,目标函数为加总一生的效用水平最大化,应如何选择消费与劳动供给路径使得
max ⁡ c ( t ) , k ( t ) : ∫ 0 + ∞ [ u ( c ( t ) ) − v ( L ( t ) ) ] d t , s . t . : k ˙ = f ( k , L ) − c , k ( 0 ) = k 0 \begin{aligned} \max _{c(t), k(t)}:\quad & \int_{0}^{+\infty}[u(c(t))-v(L(t))] \mathrm{d} t, \\ \\ \quad \mathrm{s.t.}: \quad &\dot{k}=f(k, L)-c, \quad k(0)=k_0 \end{aligned} c(t),k(t)max:s.t.:0+[u(c(t))v(L(t))]dt,k˙=f(k,L)c,k(0)=k0


1.2 Eisner and Strotz(1963)最优规模扩张

问题2:企业在 t t t时期利润函数为 π ( k ) \pi(k) π(k) k k k资本存量,投资成本函数 C ( k ˙ ) C(\dot k) C(k˙),资本利率水平 r r r。企业如何选择最优投资路径使得所有期的利润贴现之和最大?即
max ⁡ k ( t ) : ∫ 0 + ∞ [ π ( k ( t ) ) − C ( k ˙ ( t ) ) ] d t ,  s.t.  : k ( 0 ) = k 0 \begin{aligned} \max _{k(t)}: &\int_{0}^{+\infty}[\pi(k(t))-C(\dot{k}(t))] \mathrm{d} t,\\ \\ \quad \text { s.t. }:& k(0)=k_0 \end{aligned} k(t)max: s.t. :0+[π(k(t))C(k˙(t))]dt,k(0)=k0


1.3 Hotelling(1931)资源最优抽取

设某种资源总量为 S 0 S_0 S0,资源社会总需求 P ( Q ) P(Q) P(Q) Q Q Q资源供给量, P P P价格。社会供给为 Q Q Q时,社会价值函数 V ( Q ) = ∫ 0 Q P ( x ) d x V(Q) =\int_0^QP(x)dx V(Q)=0QP(x)dx。资源采掘成本 C ( Q ) C(Q) C(Q) t t t时刻采掘 Q Q Q产量资源社会净价值
N ( Q ) = V ( Q ) − C ( Q ) = ∫ 0 Q P ( x ) d x − C ( Q ) N(Q)=V(Q)-C(Q)=\int_{0}^{Q} P(x) \mathrm{d} x-C(Q) N(Q)=V(Q)C(Q)=0QP(x)dxC(Q)
设利率水平为 r r r,该资源如何使社会总价值最大化
max ⁡ Q ( t ) ∫ 0 t N ( Q ( t ) ) e − r t   d t ,  s. t.  : N ( Q ) = ∫ 0 Q P ( x ) d x − C ( Q ) , ∫ 0 t Q ( x ) d x = S 0 \begin{aligned} \max _{Q(t)} \quad &\int_{0}^{t} N(Q(t)) \mathrm{e}^{-r t} \mathrm{~d} t,\\ \text { s. t. }:\quad &N(Q)=\int_{0}^{Q} P(x) \mathrm{d} x-C(Q), \quad \int_{0}^{t} Q(x) \mathrm{d} x=S_{0} \end{aligned} Q(t)max s. t. :0tN(Q(t))ert dt,N(Q)=0QP(x)dxC(Q),0tQ(x)dx=S0


2 动态优化一般形式

2.1一般形式

形如
max ⁡ y ( x ) ( min ⁡ y ( x ) ) : ∫ x 1 x 2 F ( x , y , y ′ ) d x ,  s.t.  : f ( x , y , y ′ ) = 0 ; y ( x 1 ) = y 1 , y ( x 2 ) = y 2 \begin{aligned} &\max _{y(x)}\left(\min _{y(x)}\right): \quad\int_{x_{1}}^{x_{2}} F\left(x, y, y^{\prime}\right) \mathrm{d} x,\\ \\ &\text { s.t. }: \quad f\left(x, y, y^{\prime}\right)=0 ; \quad y\left(x_{1}\right)=y_{1}, \quad y\left(x_{2}\right)=y_{2} \end{aligned} y(x)max(y(x)min):x1x2F(x,y,y)dx, s.t. :f(x,y,y)=0;y(x1)=y1,y(x2)=y2

  • 自变量 x x x:在经济学中一般为 t t t
  • 可选择变量或路径 y ( x ) y(x) y(x):在经济学中称为时间路径 y ( t ) y(t) y(t)
  • 对于每一时刻 t t t y y y为状态变量 y ′ y' y为控制变量
  • 单期目标函数:积分里的函数 F F F,它是单期目标值同 x x x y , y ′ y,y' y,y之间的函数关系。
  • 约束条件:即 f ( x , y , y ′ ) = 0 f(x,y,y')=0 f(x,y,y)=0对选择路径进行约束;
  • 边界条件:函数 y y y的端点值。

2.2 特点

  • 目标函数是函数的函数,即泛函。目标函数值取决于函数形式
  • 被选择的是一个函数,不是向量。这区别于静态优化

2.3 目标泛函形式

  • 一般形式或标准形式

{ V ( y ) = ∫ t 1 t 2 F ( t , y ( t ) , y ˙ ( t ) ) d t V ( y ) = ∫ t 1 t 2 F ( t , y ( t ) , y ˙ ( t ) , z ( t ) , z ˙ ( t ) ) d t \left\{\begin{array}{l} V(y)=\int_{t_{1}}^{t_{2}} F(t, y(t), \dot{y}(t)) \mathrm{d} t\\ \\ V(y)=\int_{t_{1}}^{t_{2}} F(t, y(t), \dot{y}(t), z(t), \dot{z}(t)) \mathrm{d} t \end{array}\right. V(y)=t1t2F(t,y(t),y˙(t))dtV(y)=t1t2F(t,y(t),y˙(t),z(t),z˙(t))dt

  • 迈耶问题

{ V ( y ) = G ( T , y ( T ) ) V ( y ) = G ( T , y ( T ) , z ( T ) ) \left\{\begin{array}{l} V(y)=G(T, y(T)) \\ \\ V(y)=G(T, y(T), z(T)) \end{array}\right. V(y)=G(T,y(T))V(y)=G(T,y(T),z(T))

  • 博尔扎问题

{ V ( y ) = ∫ 0 T F ( t , y , y ˙ ) d t + G ( T , y ( T ) ) V ( y ) = ∫ 0 T F ( t , y , y ˙ , z , z ˙ ) d t + G ( T , y ( T ) , z ( T ) ) \left\{\begin{array}{l} V(y)=\int_{0}^{T} F(t, y, \dot{y}) \mathrm{d} t+G(T, y(T)) \\ \\ V(y)=\int_{0}^{T} F(t, y, \dot{y}, z, \dot{z}) \mathrm{d} t+G(T, y(T), z(T)) \end{array}\right. V(y)=0TF(t,y,y˙)dt+G(T,y(T))V(y)=0TF(t,y,y˙,z,z˙)dt+G(T,y(T),z(T))

  • 双重积分问题

V ( y , z ) = ∫ s 1 s 1 ∫ t 1 t 2 F ( t , s , , y ( t , s ) y t ( t , s ) , y s ( t , s ) ) d t   d s V(y, z)=\int_{s_{1}}^{s_{1}} \int_{t_{1}}^{t_{2}} F\left(t, s,, y(t, s) y_{t}(t, s), y_{s}(t, s)\right) \mathrm{d} t \mathrm{~d} s V(y,z)=s1s1t1t2F(t,s,,y(t,s)yt(t,s),ys(t,s))dt ds

  • 高阶导数问题

{ V ( y ) = ∫ 0 T F ( t , y ( t ) , y ˙ ( t ) , y ¨ ( t ) ) d t V ( y ) = ∫ 0 T F ( t , y ( t ) , y ˙ ( t ) , y ¨ ( t ) , ⋯   , y ( n ) ( t ) ) d t \left\{\begin{array}{l} V(y)=\int_{0}^{T} F(t, y(t), \dot{y}(t), \ddot{y}(t)) \mathrm{d} t \\ \\ V(y)=\int_{0}^{T} F\left(t, y(t), \dot{y}(t), \ddot{y}(t), \cdots, y^{(n)}(t)\right) \mathrm{d} t \end{array}\right. V(y)=0TF(t,y(t),y˙(t),y¨(t))dtV(y)=0TF(t,y(t),y˙(t),y¨(t),,y(n)(t))dt


2.4 边界约束条件

  • 固定端点

  • 垂直终结性条件

  • 水平终结性条件

  • 终结性曲线

  • 截断垂直性终结

  • 阶段水平性终结

    以上六种边界约束分别对应下图


2.5 非边界约束条件

  • 无任何约束条件;
  • 应变量代数等式约束 y = τ ( t , z ) y =\tau(t,z) y=τ(t,z)
  • 微分等式约束非边界约束条件 g ( t , y , y ˙ ) = 0 g(t,y,\dot y)=0 g(t,y,y˙)=0
  • 不等式约束方程非边界约束条件 g ( t , y , y ˙ ) ≥ ( ≤ ) 0 g(t,y,\dot y)\ge (\le)0 g(t,y,y˙)()0
  • 等周问题的非边界约束条件 ∫ t 1 t 2 g ( t , y , y ˙ ) d t = L \int_{t_{1}}^{t_{2}} g(t, y, \dot{y}) \mathrm{d} t=L t1t2g(t,y,y˙)dt=L

3 固定端点动态优化

形式:
max ⁡ x ( t ) ∫ t 1 t 2 F ( t , x ( t ) , x ˙ ( t ) ) d t ,  s.t. :  x ( t 1 ) = x 1 , x ( t 2 ) = x 2 \begin{aligned} \max _{x(t)} \int_{t_{1}}^{t_{2}} F(t, x(t), \dot{x}(t)) \mathrm{d} t,\\ \\ \quad \text { s.t. : } \quad x\left(t_{1}\right)=x_{1},x\left(t_{2}\right)=x_{2} \end{aligned} x(t)maxt1t2F(t,x(t),x˙(t))dt, s.t. : x(t1)=x1,x(t2)=x2


3.1 一阶必要条件:欧拉公式

x ∗ ( t ) x^{*}(t) x(t)为为最优解则
{ x ∗ ( t 1 ) = x ( t 1 ) = x 1 ; x ∗ ( t 2 ) = x ( t 2 ) = x 2 ; \left\{\begin{array}{l} x^{*}(t_1) =x(t_1)=x_1;\\ \\ x^{*}(t_2) =x(t_2)=x_2; \end{array}\right. x(t1)=x(t1)=x1;x(t2)=x(t2)=x2;
定义变差 h ( t ) h(t) h(t)
{ h ( t ) = x ( t ) − x ∗ ( t ) h ( t 1 ) = h ( t 2 ) = 0 \left\{\begin{array}{l} h(t)=x(t)-x^{*}(t)\\ \\ h(t_1)=h(t_2)=0 \end{array}\right. h(t)=x(t)x(t)h(t1)=h(t2)=0
如果 x ( t ) = x ∗ ( t ) + h ( t ) x(t) =x^{*}(t)+h(t) x(t)=x(t)+h(t)是可行的,则 h ( t ) h(t) h(t)是一条可行变分;对 ∀ R \forall R R
{ y ( t ) = x ∗ ( t ) + a h ( t ) y ( t 1 ) = x 1 y ( t 2 ) = x 2 \left\{\begin{array}{l} y(t)=x^{*}(t)+a h(t)\\ y\left(t_{1}\right)=x_{1}\\ y\left(t_{2}\right)=x_{2} \end{array}\right. y(t)=x(t)+ah(t)y(t1)=x1y(t2)=x2
仍然可行。若 x ∗ ( t ) x^{*}(t) x(t) h ( t ) h(t) h(t)固定,则目标泛函为 a a a的函数
g ( a ) = ∫ t 1 t 2 F ( t , y ( t ) , y ˙ ( t ) ) d t = ∫ t 1 t 2 F ( t , x ∗ ( t ) + a h ( t ) , x ˙ ∗ ( t ) + a h ˙ ( t ) ) d t \begin{aligned} g(a) &=\int_{t_{1}}^{t_{2}} F(t, y(t), \dot{y}(t)) \mathrm{d} t \\ \\ &=\int_{t_{1}}^{t_{2}} F\left(t, x^{*}(t)+a h(t), \dot{x}^{*}(t)+a \dot{h}(t)\right) \mathrm{d} t \end{aligned} g(a)=t1t2F(t,y(t),y˙(t))dt=t1t2F(t,x(t)+ah(t),x˙(t)+ah˙(t))dt
因为 x ∗ ( t ) x^{*}(t) x(t)为最优值,则对 ∀ h ( t ) \forall h(t) h(t) g ′ ( a ) ∣ a = 0 = 0 g'(a)|_{a=0}=0 g(a)a=0=0。由于
g ′ ( a ) = ∫ t 1 t 2 [   d F ( t , y ( t ) , y ˙ ( t ) ) / d a ] d t = ∫ t 1 t 2 [ h ( t ) F x ( t , y ( t ) , y ˙ ( t ) ) + h ˙ ( t ) F x ˙ ( t , y ( t ) , y ˙ ( t ) ) ] d t \begin{aligned} g^{\prime}(a) &=\int_{t_{1}}^{t_{2}}[\mathrm{~d} F(t, y(t), \dot{y}(t)) / \mathrm{d} a] \mathrm{d} t \\ \\ &=\int_{t_{1}}^{t_{2}}\left[h(t) F_{x}(t, y(t), \dot{y}(t))+\dot{h}(t) F_{\dot{x}}(t, y(t), \dot{y}(t))\right] \mathrm{d} t \end{aligned} g(a)=t1t2[ dF(t,y(t),y˙(t))/da]dt=t1t2[h(t)Fx(t,y(t),y˙(t))+h˙(t)Fx˙(t,y(t),y˙(t))]dt

g ′ ( 0 ) = ∫ t 1 t 2 [ h ( t ) F x ( t , x ∗ , x ˙ ∗ ) + h ˙ ( t ) F x ˙ ( t , x ∗ , x ˙ ∗ ) ] d t = ∫ t 1 t 2 [ h ( t ) F x ( t , x ∗ , x ˙ ∗ ) ] d t + ∫ t 1 t 2 [ F x ˙ ( t , x ∗ , x ˙ ∗ ) ] d h ( t ) = ∫ t 1 t 2 [ h ( t ) F x ( t , x ∗ , x ˙ ∗ ) ] d t + h ( t ) F x ˙ ( t , x ∗ , x ˙ ∗ ) ∣ t 1 t 2 − ∫ t 1 t 2 h ( t ) d ( F x ˙ ( t , x ∗ , x ˙ ∗ ) ) = ∫ t 1 t 2 [ h ( t ) ( F x ( t , x ∗ , x ˙ ∗ ) − d F x ˙ ( t , x ∗ , x ˙ ∗ ) / d t ) ] d t \begin{aligned} g^{\prime}(0) &=\int_{t_{1}}^{t_{2}}\left[h(t) F_{x}\left(t, x^{*}, \dot{x}^{*}\right)+\dot{h}(t) F_{\dot{x}}\left(t, x^{*}, \dot{x}^{*}\right)\right] \mathrm{d} t \\ \\ &=\int_{t_{1}}^{t_{2}}\left[h(t) F_{x}\left(t, x^{*}, \dot{x}^{*}\right)\right] \mathrm{d} t+\int_{t_{1}}^{t_{2}}\left[F_{\dot{x}}\left(t, x^{*}, \dot{x}^{*}\right)\right] \mathrm{d} h(t) \\ \\ &=\int_{t_{1}}^{t_{2}}\left[h(t) F_{x}\left(t, x^{*}, \dot{x}^{*}\right)\right] \mathrm{d} t+\left.h(t) F_{\dot{x}}\left(t, x^{*}, \dot{x}^{*}\right)\right|_{t_{1}} ^{t_{2}}-\int_{t_{1}}^{t_{2}} h(t) \mathrm{d}\left(F_{\dot{x}}\left(t, x^{*}, \dot{x}^{*}\right)\right) \\ \\ &=\int_{t_{1}}^{t_{2}}\left[h(t)\left(F_{x}\left(t, x^{*}, \dot{x}^{*}\right)-\mathrm{d} F_{\dot{x}}\left(t, x^{*}, \dot{x}^{*}\right) / \mathrm{d} t\right)\right] \mathrm{d} t \end{aligned} g(0)=t1t2[h(t)Fx(t,x,x˙)+h˙(t)Fx˙(t,x,x˙)]dt=t1t2[h(t)Fx(t,x,x˙)]dt+t1t2[Fx˙(t,x,x˙)]dh(t)=t1t2[h(t)Fx(t,x,x˙)]dt+h(t)Fx˙(t,x,x˙)t1t2t1t2h(t)d(Fx˙(t,x,x˙))=t1t2[h(t)(Fx(t,x,x˙)dFx˙(t,x,x˙)/dt)]dt
因此,若 x ∗ ( t ) x^{*}(t) x(t)为最优解,则对于 ∀ h ( t ) \forall h(t) h(t)都有
∫ t 1 t 2 [ h ( t ) ( F x ( t , x ∗ , x ˙ ∗ ) − d F x ˙ ( t , x ∗ , x ˙ ∗ ) / d t ) ] d t = 0 \int_{t_{1}}^{t_{2}}\left[h(t)\left(F_{x}\left(t, x^{*}, \dot{x}^{*}\right)-\mathrm{d} F_{\dot{x}}\left(t, x^{*}, \dot{x}^{*}\right) / \mathrm{d} t\right)\right] \mathrm{d} t=0 t1t2[h(t)(Fx(t,x,x˙)dFx˙(t,x,x˙)/dt)]dt=0
借助如下面引理,则可推出一阶条件欧拉公式:

A1:设 φ ( t ) \varphi(t) φ(t) [ t 0 , t 1 ] [t_0,t_1] [t0,t1]上连续,对于任意在 [ t 0 , t 1 ] [t_0,t_1] [t0,t1]上连续的函数 h ( t ) h(t) h(t),且 h ( t 0 ) = h ( t 1 ) = 0 h(t_0)=h(t_1)=0 h(t0)=h(t1)=0,都有
∫ t 0 t 1 [ h ( t ) φ ( t ) ] d t = 0 \int_{t_{0}}^{t_{1}}[h(t) \varphi(t)] \mathrm{d} t=0 t0t1[h(t)φ(t)]dt=0

根据引理A1,得到著名的欧拉公式:
F x ( t , x ∗ , x ˙ ∗ ) = d F x ˙ ( t , x ∗ , x ˙ ∗ ) / d t F_{x}\left(t, x^{*}, \dot{x}^{*}\right)=\mathrm{d} F_{\dot{x}}\left(t, x^{*}, \dot{x}^{*}\right) / \mathrm{d} t Fx(t,x,x˙)=dFx˙(t,x,x˙)/dt


3.2 二阶必要条件:勒让德条件

x ∗ ( t ) x^{*}(t) x(t)取最值,则意味着对于任意可行的 h ( t ) h(t) h(t)都有 g ′ ( a ) ∣ a = 0 = 0 g'(a)|_{a=0}=0 g(a)a=0=0。当 g ′ ′ ( 0 ) ≤ 0 g''(0)\le 0 g′′(0)0为最大值;当 g ′ ′ ( 0 ) ≥ 0 g''(0)\ge 0 g′′(0)0为最小值。
g ′ ′ ( a ) = ∫ t 1 t 2 [ d F x ( t , y , y ˙ ) d a h ( t ) + d F x ˙ ( t , y , y ˙ ) d a h ˙ ( t ) ] d t = ∫ t 1 t 2 [ F x x ( t , y , y ˙ ) ( h ( t ) ) 2 + 2 F x ˙ x ( t , y , y ˙ ) h ( t ) h ˙ ( t ) + F x ˙ x ˙ ( t , y , y ˙ ) ( h ˙ ( t ) ) 2 ] d t \begin{aligned} g^{\prime \prime}(a)=& \int_{t_{1}}^{t_{2}}\left[\frac{\mathrm{d} F_{x}(t, y, \dot{y})}{\mathrm{d} a} h(t)+\frac{\mathrm{d} F_{\dot{x}}(t, y, \dot{y})}{\mathrm{d} a} \dot{h}(t)\right] \mathrm{d} t \\ \\ =& \int_{t_{1}}^{t_{2}}\left[F_{x x}(t, y, \dot{y})(h(t))^{2}+2 F_{\dot{x} x}(t, y, \dot{y}) h(t) \dot{h}(t)+\right. \left.F_{\dot{x} \dot{x}}(t, y, \dot{y})(\dot{h}(t))^{2}\right] \mathrm{d} t \end{aligned} g′′(a)==t1t2[dadFx(t,y,y˙)h(t)+dadFx˙(t,y,y˙)h˙(t)]dtt1t2[Fxx(t,y,y˙)(h(t))2+2Fx˙x(t,y,y˙)h(t)h˙(t)+Fx˙x˙(t,y,y˙)(h˙(t))2]dt

g ′ ′ ( 0 ) = ∫ t 1 t 2 [ F x x ( t , x ∗ , x ˙ ∗ ) ( h ( t ) ) 2 + 2 F x ˙ x ( t , x ∗ , x ˙ ∗ ) h ( t ) h ˙ ( t ) + F x ˙ x ˙ ( t , x ∗ , x ˙ ∗ ) ( h ˙ ( t ) ) 2 ] d t \begin{aligned} g^{\prime \prime}(0)=& \int_{t_{1}}^{t_{2}}\left[F_{x x}\left(t, x^{*}, \dot{x}^{*}\right)(h(t))^{2}+2 F_{\dot{x} x}\left(t, x^{*}, \dot{x}^{*}\right) h(t) \dot{h}(t)+\right.\left.F_{\dot{x} \dot{x}}\left(t, x^{*}, \dot{x}^{*}\right)(\dot{h}(t))^{2}\right] \mathrm{d} t \end{aligned} g′′(0)=t1t2[Fxx(t,x,x˙)(h(t))2+2Fx˙x(t,x,x˙)h(t)h˙(t)+Fx˙x˙(t,x,x˙)(h˙(t))2]dt

∫ t 1 t 2 [ 2 F x ˙ x ( t , x ∗ , x ˙ ∗ ) h ( t ) h ˙ ( t ) ] d t = ∫ t 1 t 2 F x ˙ x ( t , x ∗ , x ˙ ∗ ) d ( h ( t ) ) 2 = ( h ( t ) ) 2 F x ˙ x ( t , x ∗ , x ˙ ∗ ) ∣ t 1 t 2 − ∫ t 1 t 2 ( h ( t ) ) 2 d F x ˙ x ( t , x ∗ , x ˙ ∗ ) d t   d t = − ∫ t 1 t 2 ( h ( t ) ) 2 d F x ˙ x ( t , x ∗ , x ˙ ∗ ) d t   d t \begin{aligned} & \int_{t_{1}}^{t_{2}}\left[2 F_{\dot{x} x}\left(t, x^{*}, \dot{x}^{*}\right) h(t) \dot{h}(t)\right] \mathrm{d} t \\ \\ =& \int_{t_{1}}^{t_{2}} F_{\dot{x} x}\left(t, x^{*}, \dot{x}^{*}\right) \mathrm{d}(h(t))^{2} \\ \\ =&\left.(h(t))^{2} F_{\dot{x} x}\left(t, x^{*}, \dot{x}^{*}\right)\right|_{t_{1}} ^{t_{2}}-\int_{t_{1}}^{t_{2}}(h(t))^{2} \frac{\mathrm{d} F_{\dot{x} x}\left(t, x^{*}, \dot{x}^{*}\right)}{\mathrm{d} t} \mathrm{~d} t \\ \\ =&-\int_{t_{1}}^{t_{2}}(h(t))^{2} \frac{\mathrm{d} F_{\dot{x} x}\left(t, x^{*}, \dot{x}^{*}\right)}{\mathrm{d} t} \mathrm{~d} t \end{aligned} ===t1t2[2Fx˙x(t,x,x˙)h(t)h˙(t)]dtt1t2Fx˙x(t,x,x˙)d(h(t))2(h(t))2Fx˙x(t,x,x˙) t1t2t1t2(h(t))2dtdFx˙x(t,x,x˙) dtt1t2(h(t))2dtdFx˙x(t,x,x˙) dt

g ′ ′ ( 0 ) = ∫ t 1 t 2 { [ F x x ( t , x ∗ , x ˙ ∗ ) − d F x ˙ x ( t , x ∗ , x ˙ ∗ ) d t ] ( h ( t ) ) 2 + F x ˙ x ˙ ( t , x ∗ , x ˙ ∗ ) ( h ˙ ( t ) ) 2 } d t g^{\prime \prime}(0)=\int_{t_{1}}^{t_{2}}\left\{\left[F_{x x}\left(t, x^{*}, \dot{x}^{*}\right)-\frac{\mathrm{d} F_{\dot{x} x}\left(t, x^{*}, \dot{x}^{*}\right)}{\mathrm{d} t}\right](h(t))^{2}+F_{\dot{x} \dot{x}}\left(t, x^{*}, \dot{x}^{*}\right)(\dot{h}(t))^{2}\right\} \mathrm{d} t g′′(0)=t1t2{[Fxx(t,x,x˙)dtdFx˙x(t,x,x˙)](h(t))2+Fx˙x˙(t,x,x˙)(h˙(t))2}dt


对于动态优化问题,
max ⁡ x ( t ) ∫ t 1 t 2 F ( t , x ( t ) , x ˙ ( t ) ) d t ,  s.t. :  x ( t 1 ) = x 1 , x ( t 2 ) = x 2 \begin{aligned} \max _{x(t)} \int_{t_{1}}^{t_{2}} F(t, x(t), \dot{x}(t)) \mathrm{d} t,\\ \\ \quad \text { s.t. : } \quad x\left(t_{1}\right)=x_{1},x\left(t_{2}\right)=x_{2} \end{aligned} x(t)maxt1t2F(t,x(t),x˙(t))dt, s.t. : x(t1)=x1,x(t2)=x2
必要条件为

  • 一阶条件欧拉方程

F x ( t , x ∗ , x ˙ ∗ ) = d F x ˙ ( t , x ∗ , x ˙ ∗ ) / d t F_{x}\left(t, x^{*}, \dot{x}^{*}\right)=\mathrm{d} F_{\dot{x}}\left(t, x^{*}, \dot{x}^{*}\right) / \mathrm{d} t Fx(t,x,x˙)=dFx˙(t,x,x˙)/dt

  • 二阶条件勒让德条件

F x ˙ x ˙ ( t , x ∗ ( t ) , x ˙ ∗ ( t ) ) ⩽ 0 , ∀ t ∈ [ t 1 , t 2 ] ,  如果  x ∗ ( t )  是最大值解  ; F x ˙ x ˙ ( t , x ∗ ( t ) , x ˙ ∗ ( t ) ) ⩾ 0 , ∀ t ∈ [ t 1 , t 2 ] ,  如果  x ∗ ( t )  是最小值解。  \begin{aligned} &F_{\dot{x} \dot{x}}\left(t, x^{*}(t), \dot{x}^{*}(t)\right) \leqslant 0, \forall t \in\left[t_{1}, t_{2}\right], \text { 如果 } x^{*}(t) \text { 是最大值解 } ;\\ &F_{\dot{x} \dot{x}}\left(t, x^{*}(t), \dot{x}^{*}(t)\right) \geqslant 0, \forall t \in\left[t_{1}, t_{2}\right], \text { 如果 } x^{*}(t) \text { 是最小值解。 } \end{aligned} Fx˙x˙(t,x(t),x˙(t))0,t[t1,t2], 如果 x(t) 是最大值解 ;Fx˙x˙(t,x(t),x˙(t))0,t[t1,t2], 如果 x(t) 是最小值解。 

  • 边界条件

x ( t 1 ) = x 1 , x ( t 2 ) = x 2 x\left(t_{1}\right)=x_{1}, \quad x\left(t_{2}\right)=x_{2} x(t1)=x1,x(t2)=x2


3.3 最优路径充分条件

对于动态优化问题
max ⁡ x ( t ) ∫ t 1 t 2 F ( t , x ( t ) , x ˙ ( t ) ) d t ,  s.t. :  x ( t 1 ) = x 1 , x ( t 2 ) = x 2 \begin{aligned} \max _{x(t)} \int_{t_{1}}^{t_{2}} F(t, x(t), \dot{x}(t)) \mathrm{d} t,\\ \\ \quad \text { s.t. : } \quad x\left(t_{1}\right)=x_{1},x\left(t_{2}\right)=x_{2} \end{aligned} x(t)maxt1t2F(t,x(t),x˙(t))dt, s.t. : x(t1)=x1,x(t2)=x2
若函数 F ( t , x ( t ) , x ˙ ( t ) ) F(t, x(t), \dot{x}(t)) F(t,x(t),x˙(t))关于 x ( t ) x(t) x(t) x ˙ ( t ) \dot x(t) x˙(t)是凹函数,且 x ∗ ( t ) x^{*}(t) x(t)满足

  • 欧拉方程: F x ( t , x ∗ , x ˙ ∗ ) = d F x ˙ ( t , x ∗ , x ˙ ∗ ) / d t F_{x}\left(t, x^{*}, \dot{x}^{*}\right)=\mathrm{d} F_{\dot{x}}\left(t, x^{*}, \dot{x}^{*}\right) / \mathrm{d} t Fx(t,x,x˙)=dFx˙(t,x,x˙)/dt

  • 边界条件: x ( t 1 ) = x 1 , x ( t 2 ) = x 2 x\left(t_{1}\right)=x_{1}, \quad x\left(t_{2}\right)=x_{2} x(t1)=x1,x(t2)=x2

x ∗ ( t ) x^{*}(t) x(t)为该优化问题的最大值;

若函数 F ( t , x ( t ) , x ˙ ( t ) ) F(t, x(t), \dot{x}(t)) F(t,x(t),x˙(t))关于 x ( t ) x(t) x(t) x ˙ ( t ) \dot x(t) x˙(t)是凸函数,且 x ∗ ( t ) x^{*}(t) x(t)满足

  • 欧拉方程: F x ( t , x ∗ , x ˙ ∗ ) = d F x ˙ ( t , x ∗ , x ˙ ∗ ) / d t F_{x}\left(t, x^{*}, \dot{x}^{*}\right)=\mathrm{d} F_{\dot{x}}\left(t, x^{*}, \dot{x}^{*}\right) / \mathrm{d} t Fx(t,x,x˙)=dFx˙(t,x,x˙)/dt

  • 边界条件: x ( t 1 ) = x 1 , x ( t 2 ) = x 2 x\left(t_{1}\right)=x_{1}, \quad x\left(t_{2}\right)=x_{2} x(t1)=x1,x(t2)=x2

x ∗ ( t ) x^{*}(t) x(t)为该优化问题的最小值;


4 例子

求解如下最优化
min ⁡ x ( t ) : ∫ 0 T ( x ˙ ( t ) ) 2   d t ,  s.t.  : x ( 0 ) = 0 , x ( T ) = B \min _{x(t)}: \int_{0}^{\mathrm{T}}(\dot{x}(t))^{2} \mathrm{~d} t, \quad \text { s.t. }: x(0)=0, \quad x(T)=\mathrm{B} x(t)min:0T(x˙(t))2 dt, s.t. :x(0)=0,x(T)=B
其中 T , B T,B T,B已知。

解:根据欧拉公式有
d F x ˙ ( t , x ∗ , x ˙ ∗ ) / d t = F x ( t , x ∗ , x ˙ ∗ ) = 0 ⇔ F x ˙ ( t , x ∗ , x ˙ ∗ ) = 2 x ˙ ( t ) = C 1 ⇔ x ( t ) = C 1 t + C 2 \begin{aligned} &\mathrm{d} F_{\dot{x}}\left(t, x^{*}, \dot{x}^{*}\right) / \mathrm{d} t=F_{x}\left(t, x^{*}, \dot{x}^{*}\right)=0\\ \\ &\Leftrightarrow F_{\dot{x}}\left(t, x^{*}, \dot{x}^{*}\right)=2 \dot{x}(t)=C_{1}\\ \\ &\Leftrightarrow x(t)=C_{1} t+C_{2} \end{aligned} dFx˙(t,x,x˙)/dt=Fx(t,x,x˙)=0Fx˙(t,x,x˙)=2x˙(t)=C1x(t)=C1t+C2
根据边界条件得到
x ∗ ( t ) = B t / T , C 1 = B t / T , C 2 = 0 x^{*}(t)=B t / T, \quad C_{1}=B t / T, \quad C_{2}=0 x(t)=Bt/T,C1=Bt/T,C2=0
二阶条件
F x ˙ x ˙ = 2 > 0 F_{\dot{x} \dot{x}}=2>0 Fx˙x˙=2>0
x ∗ ( t ) = B t / T x^{*}(t)=B t / T x(t)=Bt/T为最小值解

根据充分条件
F x x = F x ˙ x = 0 , F x ˙ x ˙ = 2 > 0 F_{x x}=F_{\dot{x} x}=0, F_{\dot{x} \dot{x}}=2>0 Fxx=Fx˙x=0,Fx˙x˙=2>0
F F F是关于 x ( t ) x(t) x(t) x ˙ ( t ) \dot x(t) x˙(t)的凸函数,所求解为最小值解。


-END-

参考文献

王弟海 . 经济学中的优化方法 [M]. 清华大学出版社,2012

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值