动态优化模型/ 变分法:泛函、极值、变分


目录

1 变分法的基本概念

1.1 泛函                                                 1.2 泛函的极值

1.3 泛函的变分                                      1.4 极值与变分

1.5. 变分法的基本引理

2 无约束条件的泛函极值

2.1 端点固定的情况                    2.2 最简泛函的几种特殊情形

例 1 (最速降线问题)                    例 2 最小旋转面问题 、悬链线方程

2.3 最简泛函的推广

(ⅰ)含多个函数的泛函                       (ii)含高阶导数的泛函                    

(iii) 含多元函数的泛函、奥式方程

2.4 端点变动的情况(横截条件)

 3 有约束条件的泛函极值                                4 最大(小)值原理



动态过程的另一类问题是所谓的动态优化问题,这类问题一般要归结为求最优控制 函数使某个泛函达到极值。当控制函数可以事先确定为某种特殊的函数形式时,问题又 简化为求普通函数的极值。求解泛函极值问题的方法主要有变分法和最优控制理论方 法。

变分法简介

变分法是研究泛函极值问题的一种经典数学方法,有着广泛的应用。下面先介绍变 分法的基本概念和基本结果,然后介绍动态系统最优控制问题求解的必要条件和最大值 原理。

1 变分法的基本概念

1.1 泛函

 1.2 泛函的极值

1.3 泛函的变分

1.4 极值与变分

利用变分的表达式(4)可以得到泛函极值与变分的关系:

1.5. 变分法的基本引理

2 无约束条件的泛函极值

2.1 端点固定的情况

2.2 最简泛函的几种特殊情形

例 1 (最速降线问题)  

最速降线问题是历史上变分法开始发展的第一个问题。它是约翰·贝努里(J. Bernoulli)于 1696 年提出的。问题的提法是这样的:设 A 和 B 是铅 直平面上不在同一铅直线上的两点,在所有连结 A 和 B 的平面曲线中,求一曲线,当 质点仅受重力作用,且初速为零,沿此曲线从 A 滑行至 B 时,使所需时间最短。

例 2 最小旋转面问题 、悬链线方程

2.3 最简泛函的推广

最简泛函取极值的必要条件可以推广到其它情况。

(ⅰ)含多个函数的泛函

(ii)含高阶导数的泛函

(iii) 含多元函数的泛函、奥式方程

2.4 端点变动的情况(横截条件)

横截条件有两种常见的特殊情况:

注意,横截条件与欧拉方程联立才能构成泛函极值的必要条件。

 3 有约束条件的泛函极值

在最优控制系统中,常常要涉及到有约束条件泛函的极值问题,其典型形式是对动态系统

 

4 最大(小)值原理

 


【下一节】变分法模型的运用:产设备的最大经济效益


 

  • 12
    点赞
  • 105
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值