Flink-WordCount
下面主要是使用 DataSet
的方式去实现,在 Flink 1.14版本之后,DataSet
的方式被弃用,主要开始使用 DataStream
的方式
1. env 环境准备
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
2. Source 加载数据
用 ,
分隔表示两行数据
DataSet<String> lineDS = env.fromElements("Who's there?",
"I think I hear them. Stand, ho! Who's there?");
3. transformation 数据转换处理
这一步是最关键的一部,大致经过4个步骤。
- 切割、标记、分组、聚合
3.1 切割
关键函数:flatMap,继承 FlatMapFunction,FlatMapFunction有两个参数(String 类型),分别代表输入和输出
DataSet<String> words = lineDS.flatMap(new FlatMapFunction<String, String>() {
@Override
public void flatMap(String value, Collector<String> out) throws Exception {
/*
value 表示每一行数据,out表示输出的数据
*/
String[] arrStr = value.split(" "); // 以空格当做分隔符
for(String s:arrStr){
out.collect(s);
}
}
});
3.2 标记
map方法的功能是标记,源代码为
public <R> MapOperator<T, R> map(MapFunction<T, R> mapper) {
if (mapper == null) {
throw new NullPointerException("Map function must not be null.");
} else {
String callLocation = Utils.getCallLocationName();
TypeInformation<R> resultType = TypeExtractor.getMapReturnTypes(mapper, this.getType(), callLocation, true);
return new MapOperator(this, resultType, (MapFunction)this.clean(mapper), callLocation);
}
}
MapFunction 是一个接口,其中有唯一一个抽象方法,源代码为
public interface MapFunction<T, O> extends Function, Serializable {
O map(T var1) throws Exception;
}
Tuple2 表示二维元组,Tuple2<String, Integer> 第一个参数为 String,第二个参数为 Integer。
下面用匿名函数的方式去实现map方法,完成数据标记的功能
// 数据标记为1,wordAndOne是被标记完成的数据,数据类型为二元组
// MapFunction 方法的功能为数据标记,输入String,输出Tuple2
DataSet<Tuple2<String,Integer>> wordAndOne = words.map(new MapFunction<String, Tuple2<String,Integer>>() {
@Override
public Tuple2<String, Integer> map(String s) throws Exception {
// s 表示每一个单词。输入类型String,返回类型Tuple2<String, Integer>
return Tuple2.of(s,1);
}
});
3.3 分组
// 分组 -- 对标记完成的数据进行分组。
// 0 表示对Tuple中的第一个参数进行分组
UnsortedGrouping<Tuple2<String, Integer>> grouped = wordAndOne.groupBy(0);
3.4 聚合
// 聚合 -- 1 表示对Tuple中的第二个参数进行聚合
AggregateOperator<Tuple2<String, Integer>> sum = grouped.sum(1);
4. Sink 数据输出
sum.print();
源码
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.AggregateOperator;
import org.apache.flink.api.java.operators.UnsortedGrouping;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector;
public class WordCount {
public static void main(String[] args) {
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
// 有两个参数,也就是两行数据
// 父类类型 接收子类对象 是完全可以的
DataSet<String> lineDS = env.fromElements("Who's there?",
"I think I hear them. Stand, ho! Who's there?");
// 数据切割-匿名函数
DataSet<String> words = lineDS.flatMap(new FlatMapFunction<String, String>() {
@Override
public void flatMap(String value, Collector<String> out) throws Exception {
/*
value 表示每一行数据,out表示输出的数据
*/
String[] arrStr = value.split(" ");
for(String s:arrStr){
out.collect(s);
}
}
});
// 数据标记为1,wordAndOne是被标记完成的数据
// MapFunction 方法的功能为数据标记,输入String,输出Tuple2
DataSet<Tuple2<String,Integer>> wordAndOne = words.map(new MapFunction<String, Tuple2<String,Integer>>() {
@Override
public Tuple2<String, Integer> map(String s) throws Exception {
// s 表示每一个单词。输入类型String,返回类型Tuple2<String, Integer>
return Tuple2.of(s,1);
}
});
// 分组 -- 对标记完成的数据进行分组。
// 0 表示对Tuple中的第一个参数进行分组
UnsortedGrouping<Tuple2<String, Integer>> grouped = wordAndOne.groupBy(0);
// 聚合 -- 1 表示对Tuple中的第二个参数进行聚合
AggregateOperator<Tuple2<String, Integer>> sum = grouped.sum(1);
try {
sum.print();
} catch (Exception e) {
e.printStackTrace();
}
}
}
依赖
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.example</groupId>
<artifactId>WordCount</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>1.13.1</version>
<scope>compile</scope>
</dependency>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.17</version>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>1.7.33</version>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_2.12</artifactId>
<version>1.13.1</version>
<scope>compile</scope>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>1.7.33</version>
<scope>compile</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>3.0.0</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
<transformers>
<transformer
implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass></mainClass>
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>