【大数据Flink】入门案例 -- WordCount

本文详细介绍了如何使用Apache Flink的DataSet API实现WordCount,包括数据加载、切割单词、标记、分组和聚合过程。通过实际代码演示,展示了如何利用flatMap和map函数完成关键操作。
摘要由CSDN通过智能技术生成

Flink-WordCount

下面主要是使用 DataSet 的方式去实现,在 Flink 1.14版本之后,DataSet 的方式被弃用,主要开始使用 DataStream 的方式

1. env 环境准备

ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

2. Source 加载数据

, 分隔表示两行数据

DataSet<String> lineDS = env.fromElements("Who's there?",
        "I think I hear them. Stand, ho! Who's there?");

3. transformation 数据转换处理

这一步是最关键的一部,大致经过4个步骤。

  • 切割、标记、分组、聚合
3.1 切割

关键函数:flatMap,继承 FlatMapFunction,FlatMapFunction有两个参数(String 类型),分别代表输入和输出

DataSet<String> words = lineDS.flatMap(new FlatMapFunction<String, String>() {
    @Override
    public void flatMap(String value, Collector<String> out) throws Exception {
        /*
        value 表示每一行数据,out表示输出的数据
         */
        String[] arrStr = value.split(" ");     // 以空格当做分隔符
        for(String s:arrStr){
            out.collect(s);
        }
    }
});
3.2 标记

map方法的功能是标记,源代码为

public <R> MapOperator<T, R> map(MapFunction<T, R> mapper) {
        if (mapper == null) {
            throw new NullPointerException("Map function must not be null.");
        } else {
            String callLocation = Utils.getCallLocationName();
            TypeInformation<R> resultType = TypeExtractor.getMapReturnTypes(mapper, this.getType(), callLocation, true);
            return new MapOperator(this, resultType, (MapFunction)this.clean(mapper), callLocation);
        }
    }

MapFunction 是一个接口,其中有唯一一个抽象方法,源代码为

public interface MapFunction<T, O> extends Function, Serializable {
    O map(T var1) throws Exception;
}

Tuple2 表示二维元组,Tuple2<String, Integer> 第一个参数为 String,第二个参数为 Integer。

下面用匿名函数的方式去实现map方法,完成数据标记的功能

// 数据标记为1,wordAndOne是被标记完成的数据,数据类型为二元组
// MapFunction 方法的功能为数据标记,输入String,输出Tuple2
DataSet<Tuple2<String,Integer>> wordAndOne = words.map(new MapFunction<String, Tuple2<String,Integer>>() {
    @Override
    public Tuple2<String, Integer> map(String s) throws Exception {
        // s 表示每一个单词。输入类型String,返回类型Tuple2<String, Integer>
        return Tuple2.of(s,1);
    }
});
3.3 分组
// 分组 -- 对标记完成的数据进行分组。
// 0 表示对Tuple中的第一个参数进行分组
        UnsortedGrouping<Tuple2<String, Integer>> grouped = wordAndOne.groupBy(0);
3.4 聚合
// 聚合 -- 1 表示对Tuple中的第二个参数进行聚合
        AggregateOperator<Tuple2<String, Integer>> sum = grouped.sum(1);

4. Sink 数据输出

sum.print();

在这里插入图片描述

源码

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.AggregateOperator;
import org.apache.flink.api.java.operators.UnsortedGrouping;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector;

public class WordCount {

    public static void main(String[] args) {

        ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

        // 有两个参数,也就是两行数据
        // 父类类型 接收子类对象 是完全可以的
        DataSet<String> lineDS = env.fromElements("Who's there?",
                "I think I hear them. Stand, ho! Who's there?");

        // 数据切割-匿名函数
        DataSet<String> words = lineDS.flatMap(new FlatMapFunction<String, String>() {
            @Override
            public void flatMap(String value, Collector<String> out) throws Exception {
                /*
                value 表示每一行数据,out表示输出的数据
                 */
                String[] arrStr = value.split(" ");
                for(String s:arrStr){
                    out.collect(s);
                }
            }
        });

        // 数据标记为1,wordAndOne是被标记完成的数据
        // MapFunction 方法的功能为数据标记,输入String,输出Tuple2
        DataSet<Tuple2<String,Integer>> wordAndOne = words.map(new MapFunction<String, Tuple2<String,Integer>>() {
            @Override
            public Tuple2<String, Integer> map(String s) throws Exception {
                // s 表示每一个单词。输入类型String,返回类型Tuple2<String, Integer>
                return Tuple2.of(s,1);
            }
        });

        // 分组 -- 对标记完成的数据进行分组。
        // 0 表示对Tuple中的第一个参数进行分组
        UnsortedGrouping<Tuple2<String, Integer>> grouped = wordAndOne.groupBy(0);

        // 聚合 -- 1 表示对Tuple中的第二个参数进行聚合
        AggregateOperator<Tuple2<String, Integer>> sum = grouped.sum(1);

        try {
            sum.print();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

依赖

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.example</groupId>
    <artifactId>WordCount</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>1.8</maven.compiler.source>
        <maven.compiler.target>1.8</maven.compiler.target>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>1.13.1</version>
            <scope>compile</scope>
        </dependency>
        <dependency>
            <groupId>log4j</groupId>
            <artifactId>log4j</artifactId>
            <version>1.2.17</version>
            <scope>runtime</scope>
        </dependency>
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-log4j12</artifactId>
            <version>1.7.33</version>
            <scope>runtime</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_2.12</artifactId>
            <version>1.13.1</version>
            <scope>compile</scope>
        </dependency>
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-api</artifactId>
            <version>1.7.33</version>
            <scope>compile</scope>
        </dependency>
    </dependencies>
    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>3.0.0</version>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <filters>
                                <filter>
                                    <artifact>*:*</artifact>
                                    <excludes>
                                        <exclude>META-INF/*.SF</exclude>
                                        <exclude>META-INF/*.DSA</exclude>
                                        <exclude>META-INF/*.RSA</exclude>
                                    </excludes>
                                </filter>
                            </filters>
                            <transformers>
                                <transformer
                                        implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                                    <mainClass></mainClass>
                                </transformer>
                            </transformers>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

</project>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

牛顿编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值