数据结构练习题——图(含应用题)

1.选择题

1)在一个图中,所有顶点的度数之和等于图的边数的(   )倍。

  A1/2            B1             C2             D4

答案:C

2)在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的(   )倍。

  A1/2            B1             C2             D4

答案:B

解释:有向图所有顶点入度之和等于所有顶点出度之和。

3)具有n个顶点的有向图最多有(   )条边。 

An              Bn(n-1)         Cn(n+1)        Dn2

答案:B

解释:有向图的边有方向之分,即为从n个顶点中选取2个顶点有序排列,结果为n(n-1)

4n个顶点的连通图用邻接距阵表示时,该距阵至少有   个非零元素。

An              B2(n-1)         Cn/2           Dn2

答案:B

5G是一个非连通无向图,共有28条边,则该图至少有   个顶点。

A7              B8             C9             D10

答案:C

解释:8个顶点的无向图最多有8*7/2=28条边,再添加一个点即构成非连通无向图,故至少有9个顶点。

6若从无向图的任意一个顶点出发进行一次深度优先搜索可以访问图中所有的顶点,则该图一定是   图。

A非连通         B连通          C强连通        D有向

答案:B

解释:即从该无向图任意一个顶点出发有到各个顶点的路径,所以该无向图是连通图。

7)下面( )算法适合构造一个稠密图G的最小生成树。

A Prim算法      BKruskal算法   CFloyd算法     DDijkstra算法

答案:A

解释:Prim算法适合构造一个稠密图G的最小生成树,Kruskal算法适合构造一个稀疏图G的最小生成树。

8)用邻接表表示图进行广度优先遍历时,通常借助(   )来实现算法。

A.栈            B. 队列            C.              D.图

答案:B

解释:广度优先遍历通常借助队列来实现算法,深度优先遍历通常借助栈来实现算法。

9)用邻接表表示图进行深度优先遍历时,通常借助(   )来实现算法。

A.栈            B. 队列            C.              D.图

答案:A

解释:广度优先遍历通常借助队列来实现算法,深度优先遍历通常借助栈来实现算法。

10)深度优先遍历类似于二叉树的(   )。

A.先序遍历      B.中序遍历        C.后序遍历      D.层次遍历

答案:A

11)广度优先遍历类似于二叉树的(   )。

A.先序遍历      B.中序遍历        C.后序遍历       D.层次遍历

答案:D

12图的BFS生成树的树高比DFS生成树的树高(   )。

A.小            B相等            C小或相等       D大或相等

答案:C

解释:对于一些特殊的图,比如只有一个顶点的图,其BFS生成树的树高和DFS生成树的树高相等。一般的图,根据图的BFS生成树和DFS树的算法思想,BFS生成树的树高比DFS生成树的树高小。

(13)已知图的邻接矩阵如图6.30所示,则从顶点v0出发按深度优先遍历的结果是(    )。

                            图6.30  邻接矩阵

(14)已知图的邻接表如图6.31所示,则从顶点v0出发按广度优先遍历的结果是(    ),按深度优先遍历的结果是(    )。

图6.31  邻接表

A.0 1 3 2                          B.0 2 3 1                 C.0 3 2 1                         D.0 1 2 3

答案:DD

15下面   方法可以判断出一个有向图是否有环。

A深度优先遍历      B拓扑排序      C求最短路径     D求关键路径

答案:B

2.应用

(1)已知图6.32所示的有向图,请给出:

① 每个顶点的入度和出度;    

② 邻接矩阵;

③ 邻接表;

④ 逆邻接表。             

           

答案:

(2)已知如图6.33所示的无向网,请给出:

邻接矩阵;    

邻接表;

最小生成树

答案:

  

(3)已知图的邻接矩阵如图6.34所示。试分别画出自顶点1出发进行遍历所得的深度优先生成树和广度优先生成树。

(4)有向网如图6.35所示,试用迪杰斯特拉算法求出从顶点a到其他各顶点间的最短路径,完成表6.9。

表6.9

D

终点

i=1

i=2

i=3

i=4

i=5

i=6

b

15

(a,b)

15

(a,b)

15

(a,b)

15

(a,b)

15

(a,b)

15

(a,b)

c

2

(a,c)

d

12

(a,d)

12

(a,d)

11

(a,c,f,d)

11

(a,c,f,d)

e

10

(a,c,e)

10

(a,c,e)

f

6

(a,c,f)

g

16

(a,c,f,g)

16

(a,c,f,g)

14

(a,c,f,d,g)

S

终点集

{a,c}

{a,c,f}

{a,c,f,e}

{a,c,f,e,d}

{a,c,f,e,d,g}

{a,c,f,e,d,g,b}

   

(5)试对图6.36所示的AOE-网:

① 求这个工程最早可能在什么时间结束;    

② 求每个活动的最早开始时间和最迟开始时间;

③ 确定哪些活动是关键活动

答案:按拓扑有序的顺序计算各个顶点的最早可能开始时间Ve和最迟允许开始时间Vl。然后再计算各个活动的最早可能开始时间e和最迟允许开始时间l,根据l - e = 0? 来确定关键活动,从而确定关键路径。

此工程最早完成时间为43。关键路径为<1, 3><3, 2><2, 5><5, 6>

     

...... ( B )3. 有8个结点的无向最多有 条边。 A.14 B. 28 C. 56 D. 112 ( C )4. 有8个结点的无向连通最少有 条边。 A.5 B. 6 C. 7 D. 8 ( C )5. 有8个结点的有向完全有 条边。 A.14 B. 28 C. 56 D. 112 ( B )6. 用邻接表表示进行广度优先遍历时,通常是采用 来实现算法的。 A.栈 B. 队列 C. 树 D. ...... 二、填空题(每空1分,共20分) 1. 有 邻接矩阵 、 邻接表 等存储结构,遍历有 深度优先遍历 、 广度优先遍历 等方法。 2. 有向G用邻接表矩阵存储,其第i行的所有元素之和等于顶点i的 出度 。 3. 如果n个顶点的是一个环,则它有 n 棵生成树。 4. n个顶点e条边的,若采用邻接矩阵存储,则空间复杂度为 O(n2) 。 5. n个顶点e条边的,若采用邻接表存储,则空间复杂度为 O(n+e) 。 ....... 1. 【严题集7.1①】已知如所示的有向,请给出该的: 每个顶点的入/出度; 邻接矩阵; 邻接表; 逆邻接表。 2. 【严题集7.7②】请对下的无向带权: 写出它的邻接矩阵,并按普里姆算法求其最小生成树; 写出它的邻接表,并按克鲁斯卡尔算法求其最小生成树。 ........ 五、算法设计题(每题10分,共30分) 1. 【严题集7.14③】编写算法,由依次输入的顶点数目、弧的数目、各顶点的信息和各条弧的信息建立有向的邻接表。 解:Status Build_AdjList(ALGraph &G) //输入有向的顶点数,边数,顶点信息和边的信息建立邻接表 { InitALGraph(G); scanf("%d",&v); if(v<0) return ERROR; //顶点数不能为负 G.vexnum=v; scanf("%d",&a); if(a<0) return ERROR; //边数不能为负 G.arcnum=a; for(m=0;m<v;m++) G.vertices[m].data=getchar(); //输入各顶点的符号 for(m=1;m<=a;m++) { t=getchar();h=getchar(); //t为弧尾,h为弧头 if((i=LocateVex(G,t))<0) return ERROR; if((j=LocateVex(G,h))nextarc;q=q->nextarc); q->nextarc=p; } p->adjvex=j;p->nextarc=NULL; }//while return OK; }//Build_AdjList 2. 【严题集7.15③】试在邻接矩阵存储结构上实现的基本操作:DeleteArc(G,v,w)。 (刘提示:删除所有从第i个顶点出发的边的方法是 将邻接矩阵的第i行全部置0 ) ........
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沐雨风栉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值