数据结构|《图》练习题

这篇博客是一份关于图论的练习题集,涵盖单项选择题、填空题、判断题和应用题。题目涉及有向图与无向图的边数、顶点度数关系、连通分量、深度优先搜索(DFS)和广度优先搜索(BFS)的应用,以及最小生成树和最短路径问题。通过这些题目,读者可以加深对图论基本概念的理解。
摘要由CSDN通过智能技术生成

《图》练习题

一、单项选择题
  1. 在一个具有n个顶点的有向图中,若所有顶点的出度数之和为s,则所有顶点的度数之和为(  )。
    A. s
    B. s-1
    C. s+1
    D. 2s

  2. 在一个具有n个顶点的无向完全图中,所含的边数为(  )。
    A. n
    B. n(n-1)
    C. n(n-1)/2
    D. n(n+1)/2

  3. 在一个无向图中,若两顶点之间的路径长度为k,则该路径上的顶点数为( )。
    A. k
    B. k+1
    C. k+2
    D. 2k

  4. 对于一个具有n个顶点的无向连通图,它包含的连通分量的个数为( )。
    A. 0
    B. 1
    C. n
    D. n+1

  5. 若一个图中包含有k个连通分量,若要按照深度优先搜索的方法访问所有顶点,则必须调用( )次深度优先搜索遍历的算法。
    A. k
    B. 1
    C. k-1
    D. k+1

  6. 若要把n个顶点连接为一个连通图,则至少需要( )条边。
    A. n
    B. n+1
    C. n-1
    D. 2n

  7. 在一个具有n个顶点和e条边的无向图的邻接矩阵中,表示边存在的元素(又称为有效元素)的个数为( )。
    A. n
    B. n×e

...... ( B )3. 有8个结点的无向最多有 条边。 A.14 B. 28 C. 56 D. 112 ( C )4. 有8个结点的无向连通最少有 条边。 A.5 B. 6 C. 7 D. 8 ( C )5. 有8个结点的有向完全有 条边。 A.14 B. 28 C. 56 D. 112 ( B )6. 用邻接表表示进行广度优先遍历时,通常是采用 来实现算法的。 A.栈 B. 队列 C. 树 D. ...... 二、填空题(每空1分,共20分) 1. 有 邻接矩阵 、 邻接表 等存储结构,遍历有 深度优先遍历 、 广度优先遍历 等方法。 2. 有向G用邻接表矩阵存储,其第i行的所有元素之和等于顶点i的 出度 。 3. 如果n个顶点的是一个环,则它有 n 棵生成树。 4. n个顶点e条边的,若采用邻接矩阵存储,则空间复杂度为 O(n2) 。 5. n个顶点e条边的,若采用邻接表存储,则空间复杂度为 O(n+e) 。 ....... 1. 【严题集7.1①】已知如所示的有向,请给出该的: 每个顶点的入/出度; 邻接矩阵; 邻接表; 逆邻接表。 2. 【严题集7.7②】请对下的无向带权: 写出它的邻接矩阵,并按普里姆算法求其最小生成树; 写出它的邻接表,并按克鲁斯卡尔算法求其最小生成树。 ........ 五、算法设计题(每题10分,共30分) 1. 【严题集7.14③】编写算法,由依次输入的顶点数目、弧的数目、各顶点的信息和各条弧的信息建立有向的邻接表。 解:Status Build_AdjList(ALGraph &G) //输入有向的顶点数,边数,顶点信息和边的信息建立邻接表 { InitALGraph(G); scanf("%d",&v); if(v<0) return ERROR; //顶点数不能为负 G.vexnum=v; scanf("%d",&a); if(a<0) return ERROR; //边数不能为负 G.arcnum=a; for(m=0;m<v;m++) G.vertices[m].data=getchar(); //输入各顶点的符号 for(m=1;m<=a;m++) { t=getchar();h=getchar(); //t为弧尾,h为弧头 if((i=LocateVex(G,t))<0) return ERROR; if((j=LocateVex(G,h))nextarc;q=q->nextarc); q->nextarc=p; } p->adjvex=j;p->nextarc=NULL; }//while return OK; }//Build_AdjList 2. 【严题集7.15③】试在邻接矩阵存储结构上实现的基本操作:DeleteArc(G,v,w)。 (刘提示:删除所有从第i个顶点出发的边的方法是 将邻接矩阵的第i行全部置0 ) ........
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值