Meta:统计视角的LLM安全对齐分析

在这里插入图片描述

📖标题:Mission Impossible: A Statistical Perspective on Jailbreaking LLMs
🌐来源:arXiv, 2408.01420

🛎️文章简介

🔸研究问题:大语言模型(LLM)在经过安全对齐后,仍然容易受到“越狱”攻击。
🔸主要贡献:论文提出了一种理论框架来分析预训练阶段和后对齐阶段的“越狱”现象,并设计了一种新的强化学习与人类反馈(RLHF)算法来提高模型的安全性。

📝重点思路

🔺相关工作

🔸安全来源:尽管LLM能够有效地执行多项任务,但由于其预训练数据中不可避免地存在有害元素,很容易生成攻击性或不当内容,包括仇恨言论、恶意软件、虚假信息或社会偏见。
🔸对齐难点:训练语料库中的行为多样性,对于捕获不同的文化偏好至关重要,有害的界定最终取决于用户的偏好,因此对齐步骤不是通用的,而是取决于模型使用的特定用例。
🔸当前思路:包括在SFT期间注入安全信息、人类专家组建红队测试和改进整个RLHF流程,但对越狱攻击的原则性通用防御的建议很有限。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值