LLMs-鲁棒性
文章平均质量分 83
CSPhD-winston-杨帆
合作:winstonyf@qq.com 暨大博士生 川师大研究生 前成都东软教师
展开
-
翻译:arXiv-2023 PromptRobust: Towards Evaluating the Robustness of Large Language Models on
对大型语言模型(LLMs)的日益依赖要求我们全面了解它们对提示的鲁棒性。在本文中,我们介绍了PromptRobust,一个旨在衡量LLMs对对抗性提示的弹性的鲁棒性基准测试。本研究使用了大量对抗性文本攻击,这些攻击针对提示的多个层面:字符、单词、句子和语义。这些对抗性提示被设计成模仿合理的用户错误,如错别字或同义词,旨在评估微小的偏差如何影响LLM的结果,同时保持语义完整性。然后,这些提示被用于各种任务,包括情感分析、自然语言推理、阅读理解、机器翻译和数学。原创 2024-08-12 21:11:16 · 695 阅读 · 0 评论 -
论文翻译:A survey on large language model (LLM) security and privacy: The Good, The Bad, and The Ugly
大型语言模型(LLMs),如ChatGPT和Bard,已经彻底改变了自然语言理解和生成。它们具有深度语言理解能力、类似人类的文本生成能力、上下文意识和强大的问题解决技能,使它们在各个领域(例如搜索引擎、客户支持、翻译)中变得不可或缺。同时,LLMs也在安全领域获得了关注,揭示了安全漏洞并展示了它们在安全相关任务中的潜力。本文探讨了LLMs与安全性和隐私的交集。具体来说,我们研究了LLMs如何积极影响安全性和隐私,与它们使用相关的潜在风险和威胁,以及LLMs内部的固有漏洞。原创 2024-08-05 12:38:19 · 913 阅读 · 0 评论 -
大模型-鲁棒性总结-2024-7-28
大语言模型(LLMs)的鲁棒性(Robustness of Large Models)指的是大规模机器学习模型在面对输入数据的变化、噪声或攻击时,仍然能够保持其性能和稳定性的能力。这在实际应用中非常重要,因为真实世界的数据往往是嘈杂的、不可预测的,并且有时可能包含恶意攻击。以下是一些关键点来解释LLMs的鲁棒性:对噪声的鲁棒性:LLMs需要能够处理数据中的噪声,如输入数据中的随机误差或异常值。例如,在图像分类任务中,图像可能会包含噪声或失真,LLMs应当能够正确分类这些图像。原创 2024-07-28 15:34:27 · 1455 阅读 · 0 评论 -
论文阅读:Hallucination Detection: Robustly Discerning Reliable Answers in Large Language Models
大型语言模型(LLMs)在自然语言处理任务中取得了显著成就,但它们生成的文本中存在“幻觉”问题,即生成与输入源不一致或不忠实的内容,这可能导致严重后果。特别是在需要事实准确性的领域,如医学和金融,幻觉的存在严重阻碍了LLMs的应用。论文得出结论,RelD是一个有效的工具,能够检测LLMs生成的可靠答案,并为减轻幻觉提供了有希望的方向。未来的工作可能会集中在进一步提高RelD的性能,以及探索更深层次的语义关系和上下文理解,以提高幻觉检测的准确性和鲁棒性。原创 2024-07-28 14:24:58 · 457 阅读 · 0 评论 -
论文阅读:Examining the robustness of LLM evaluation to the distributional assumptions of benchmarks
大型语言模型(LLMs)在自然语言处理领域取得了显著进展,但它们的评估方法存在挑战。传统的评估方法通常假设基准测试中的提示是独立同分布(i.i.d.)的样本,这种假设可能不准确,因为实际应用中提示的分布可能因用例而异。因此,研究者们提出了研究LLMs评估的鲁棒性,特别是针对基准测试中提示的分布假设。论文主要研究了以下问题:基准测试中的提示权重是否对模型的评估结果有显著影响;这篇论文主要探讨了大型语言模型(LLMs)在基准测试中的评估问题,特别是关注了基准测试中提示的分布假设对模型评估的影响。原创 2024-07-28 14:05:36 · 439 阅读 · 0 评论 -
论文阅读:Revisiting Out-of-distribution Robustness in NLP: Benchmark, Analysis, and LLMs Evaluations
这篇论文主要探讨了自然语言处理(NLP)中大型预训练语言模型(PLMs)在面对分布外(OOD)数据时的鲁棒性问题。原创 2024-07-27 15:58:21 · 323 阅读 · 0 评论 -
论文阅读:Can LLM Replace Stack Overflow? A Study on Robustness and Reliability of Large Language Model C
作者创建了 RobustAPI,一个包含 1208 个 Stack Overflow 上的问题和相关 Java API 的数据集,用以评估 LLMs 生成的代码的可靠性和鲁棒性。整体来看,这篇论文强调了在软件开发中使用 LLMs 时需要考虑的代码质量与安全性问题,并提供了一个评估和改进这些模型的框架。:提出了改进生成代码质量的方法,包括上下文学习、微调和预训练,并强调了评估和改进 LLMs 在现实世界软件开发中的重要性。原创 2024-07-27 11:00:55 · 328 阅读 · 0 评论 -
论文阅读:GSM-PLUS: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Probl
这篇论文介绍了一个名为GSM-PLUS的基准测试,它旨在全面评估大型语言模型(LLMs)解决数学问题时的鲁棒性。原创 2024-07-26 19:10:43 · 460 阅读 · 1 评论 -
论文阅读:Eight Methods to Evaluate Robust Unlearning in LLMs
然后,他们以Eldan和Russinovich在2023年提出的“Who’s Harry Potter”(WHP)模型为研究对象,进行了一系列的测试,以评估该模型的遗忘效果是否鲁棒和有竞争力。此外,这些模型可能在某些情况下展现出不期望的行为。:研究者们想要评估LLMs的遗忘技术,确保这些模型在遗忘特定知识后,依然能够在其他任务上保持竞争力,并且遗忘的知识不容易被重新提取。总的来说,这篇论文深入探讨了LLMs的遗忘技术,并对其有效性和局限性进行了全面的评估,为未来在这一领域的研究提供了宝贵的见解和建议。原创 2024-07-26 17:41:17 · 417 阅读 · 0 评论 -
翻译论文:Examining the robustness of LLM evaluation to the distributional assumptions of benchmarks
基准测试已成为评估大型语言模型(LLMs)的核心方法。研究界通常依赖模型在基准测试提示上的平均表现来评估模型的性能。这与假设基准测试中的测试提示是来自感兴趣的现实世界分布的随机样本一致。我们注意到这通常并非事实;相反,我们认为感兴趣的分布根据特定用例而变化。我们发现(1)模型在测试提示上的表现之间的相关性是非随机的,(2)考虑测试提示之间的相关性可以改变主要基准测试上的模型排名,(3)这些相关性的解释因素包括语义相似性和常见的LLM失败点。原创 2024-07-24 10:37:20 · 790 阅读 · 0 评论 -
论文翻译:Hallucination Detection: Robustly Discerning Reliable Answers in Large Language Models
大型语言模型(LLMs)在各种自然语言处理任务中获得了广泛的应用,包括问答和对话系统。然而,LLMs的一个主要缺点是幻觉问题,即它们生成的内容不忠实或不一致,偏离了输入源,导致严重后果。在本文中,我们提出了一个稳健的鉴别器RelD,有效地检测LLMs生成答案中的幻觉。RelD是在一个构建的双语问答对话数据集RelQA上训练的,该数据集包括由LLMs生成的答案和一套全面的指标。我们的实验结果表明,提出的RelD成功地检测了由不同LLMs生成的答案中的幻觉。原创 2024-07-22 11:43:17 · 425 阅读 · 0 评论 -
论文阅读:A Survey on Evaluation of Large Language Models-鲁棒性相关内容
Wang等人(2023c)是一项早期工作,使用AdvGLUE (Wang等人,2021)、ANLI (Nie等人,2019)和DDXPlus (Fansi Tchango等人,2022)数据集等现有基准,从对抗性和OOD角度评估了ChatGPT和其他LLMs。卓等人(2023b)评估了语义解析的鲁棒性。评估系统面对意外输入的稳定性是鲁棒性研究的核心,主要从对抗鲁棒性和出分布泛化两方面考察大语言模型,发现当前模型对对抗性提示和视觉输入显著脆弱,提示模型在部署中面临安全隐患,需要继续提高模型的鲁棒性。原创 2024-07-25 15:35:05 · 627 阅读 · 0 评论 -
论文翻译:Can LLM Replace Stack Overflow? A Study on Robustness and Reliability of Large Language
Can LLM Replace Stack Overflow? A Study on Robustness and Reliability of Large Language Model Code Generation原创 2024-07-18 21:58:48 · 637 阅读 · 0 评论 -
论文翻译:Revisiting Out-of-distribution Robustness in NLP: Benchmark, Analysis, and LLMs Evaluations
本文重新审视了自然语言处理领域中关于分布外(OOD)鲁棒性的研究。我们发现,先前研究中的分布偏移设置通常缺乏足够的挑战,阻碍了对OOD鲁棒性准确评估。为了解决这些问题,我们提出了一种基准构建协议,确保清晰的区分和具有挑战性的分布偏移。然后我们介绍了BOSS,一个用于分布外鲁棒性评估的基准测试套件,涵盖5个任务和20个数据集。基于BOSS,我们对预训练语言模型进行了一系列的实验,分析和评估OOD鲁棒性。首先,对于普通的微调,我们检查了分布内(ID)和OOD性能之间的关系。原创 2024-07-24 20:06:22 · 1004 阅读 · 0 评论 -
论文翻译:ICML-2024 TrustLLM: Trustworthiness in Large Language Models
大型语言模型(LLMs),如ChatGPT所示,因其卓越的自然语言处理能力而受到广泛关注。尽管如此,这些LLMs在可信度方面存在许多挑战。因此,确保LLMs的可信度成为一个重要议题。本文介绍了TrustLLM,这是对LLMs可信度的全面研究,包括不同维度可信度的原则、建立的基准、主流LLMs的可信度评估与分析,以及开放性挑战和未来方向的讨论。具体来说,我们首先提出了一套涵盖八个维度的可信LLMs的原则。基于这些原则,我们进一步建立了包括真实性、安全性、公平性、鲁棒性、隐私性和机器伦理在内的六个维度的基准。原创 2024-07-16 17:41:17 · 800 阅读 · 0 评论 -
翻译论文:Eight Methods to Evaluate Robust Unlearning in LLMs
机器遗忘对于从大型语言模型(LLMs)中移除有害能力和记忆文本可能是有用的,但目前还没有标准化的方法来严格评估它。在本文中,我们首先调查了现有遗忘评估的技术和局限性。其次,我们对Eldan和Russinovich(2023年)的“谁是哈利·波特”(WHP)模型中的遗忘的鲁棒性和竞争力进行了全面的测试。原创 2024-07-23 17:24:00 · 605 阅读 · 0 评论 -
论文阅读:JailbreakBench: An Open Robustness Benchmark for Jailbreaking Large Language Models
论文指出评估越狱攻击存在挑战,如缺乏评估标准、成本和成功率计算方法不一致、许多研究无法复现。为解决这些问题,作者提出了JailbreakBench,这是一个开源基准测试,包含以下组件:持续更新的越狱提示库(jailbreak artifacts)。包含100种行为的越狱数据集,符合OpenAI的使用政策。标准化的评估框架,包括威胁模型、系统提示、聊天模板和评分函数。跟踪各种LLMs攻击和防御性能的排行榜。原创 2024-07-08 21:49:50 · 559 阅读 · 1 评论 -
论文阅读:Exploring the Robustness of Large Language Models for Solving Programming Problems
论文探讨了大型语言模型(LLMs)在解决编程问题方面的鲁棒性。近期,基于Transformer的模型,如Codex和ChatGPT,显示出解决编程问题的高度能力。然而,这些模型是基于对问题描述的理解生成程序,还是仅仅基于训练数据中的相关问题检索源代码,这一点尚未明确。为了探索这个问题,作者对几种流行的LLMs进行了实验,包括CodeGen和GPT-3.5系列模型,这些模型能够处理编程入门问题中的代码生成任务。实验结果表明,CodeGen和Codex对问题描述的表面修改非常敏感,这显著影响了代码生成性能。原创 2024-07-08 22:30:23 · 605 阅读 · 0 评论 -
论文翻译:GSM-PLUS: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Probl
大型语言模型(LLMs)在各种数学推理基准测试中取得了令人印象深刻的表现。然而,关于这些模型是否真的理解并应用数学知识,还是仅仅依赖于数学推理的捷径,争论越来越多。一个关键且频繁出现的证据是,当数学问题稍有变化时,LLMs可能会出现不正确的行为。这激励我们通过测试广泛的数学问题范围,包括GSM8K(Cobbe等人,2021年)、高中数学MATH(Hendrycks等人,2021年)和大学数学定理问答Theoremqa(Chen等人,2023年),来评估LLMs数学推理能力的鲁棒性。原创 2024-07-25 10:17:07 · 887 阅读 · 0 评论