浙大:LLM的LoRA应用综述

在这里插入图片描述

📖标题:A Survey on LoRA of Large Language Models
🌐来源:arXiv, 2407.11046

🛎️文章简介

主要介绍了LoRA(Low-Rank Adaptation)在大语言模型(LLM)中的应用和相关研究进展,从多个方面对LoRA进行了系统的回顾和分析,包括下游适应性改善、跨任务泛化、效率提升、联邦学习和应用场景等。

📝重点思路

🔺理论分析

🔸LoRA通过低秩分解,将全参优化拆分为两个小矩阵,减少了模型内存、激活内存、梯度内存和优化器内存的需求。
🔸目前有多角度分析LoRA为何有效,包括内核分析、表达能力和局部最优等。
🔸LoRA还可以应用于其他学习范式,包括在预训练和继续训练的灾难性遗忘、长上下文等。

🔺下游适配

🔸低秩更新使LoRA具有参数效率,但需要打破对下游知识和能力的限制。
🔸LoRAd秩并非越高越好,需要结合场景动态调整。
🔸LoRA的收敛速度比完全微调慢,还对超参数敏感,需要优化自适应能力。
🔸LoRA与其他学习范式兼容,例如贝叶斯学习、上下文学习和主动学习。

🔺跨任务

🔸早期将不同的LoRA插件与手动设计的权重线性组合,但经常无法找到最佳权重。
🔸随后在任务级别、实例级别和令牌级别,实现更精确和自适应的组合。
🔸LoRA还可以结合MoE,已被证明在许多任务中都是有效的。

🔺效率提升

🔸参数缩减等角度提高LoRA的计算效率,包括冻结、剪枝和共享等。
🔸参数量化减少位宽,包括基于训练后量化和基于量化感知训练。
🔸通过并行微调和并行推理,充分利用集群资源。

🔺联邦学习

🔸数据异构性,缓解跨客户端数据分布的差异。
🔸设备异构性,缓解客户端在硬件能力和网络连接方面的差异。
🔸模型异构性,缓解客户之间模型结构的差异。
🔸参数隐私,保护客户特定的参数及数据。

附录

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值