清华:LLM自适应缓存压缩策略

在这里插入图片描述

📖标题:EMS: Adaptive Evict-then-Merge Strategy for Head-wise KV Cache Compression Based on Global-Local Importance
🌐来源:arXiv, 2412.08521

🌟摘要

🔸随着大型语言模型(LLM)的不断发展,对各种应用程序中长上下文的更高质量和更快处理的需求也在增长。KV缓存被广泛采用,因为它存储了之前生成的键和值令牌,有效地减少了推理过程中的冗余计算。然而,随着内存开销成为一个重要问题,KV缓存的高效压缩越来越受到人们的关注。大多数现有方法从两个角度执行压缩:识别重要标记和设计压缩策略。然而,由于累积的注意力分数或位置编码的影响,这些方法通常会产生重要标记的有偏分布。此外,他们忽略了不同头部之间的稀疏性和冗余性,这导致难以在头部保留最有效的信息。
🔸为此,我们提出EMS来克服这些局限性,同时在极端压缩比下实现更好的KV缓存压缩。具体来说,我们引入了一个全局本地分数,该分数结合了全局和本地KV令牌的累积注意力分数,以更好地识别令牌的重要性。对于压缩策略,我们设计了一个自适应和统一的Evict-then-Merge框架,该框架考虑了不同头部KV令牌的稀疏性和冗余性。此外,我们通过零类机制实现了头部并行压缩,以提高效率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值