📖标题:Imitate, Explore, and Self-Improve: A Reproduction Report on Slow-thinking Reasoning Systems
🌐来源:arXiv, 2412.09413
🌟摘要
🔸最近,慢思维推理系统,如o1,在解决复杂推理任务方面表现出了显著的能力。这些系统在响应查询之前通常会进行一个扩展的思维过程,使它们能够生成更彻底、准确和合理的解决方案。这些系统主要由行业开发和维护,其核心技术未公开披露。作为回应,研究界越来越多的研究旨在探索这些强大推理系统背后的技术基础。
🔸在这些先前工作的基础上,本文提出了一份关于实现类o1推理系统的复制报告。我们引入了一个“模仿、探索和自我改进”的框架,作为我们训练推理模型的主要技术方法。在初始阶段,我们使用提取的长形式思维数据来微调推理模型,使其能够调用缓慢的思维模式。然后,鼓励该模型通过生成多个展开来探索具有挑战性的问题,这可以产生越来越多的高质量轨迹,从而得到正确的答案。此外,该模型通过迭代改进其训练数据集来进行自我改进。
🔸为了验证这种方法的有效性,我们在三个具有挑战性的基准上进行了广泛的实验。实验结果表明,与这些基准上的行业级推理系统相比,我们的方法取得了具有竞争力的性能。我们在 https://github.com/RUCAIBox/Slow_Thinking_with_LLMs 发布我们的资源。
🛎️文章简介
🔸研究问题:如何构建和改进类似于o1的慢思考推理系统,以提高其在复杂推理任务中的表现?
🔸主要贡献:论文提出了一个三阶段的训练方法(模仿、探索和自我改进),并通过实验验证了其在复杂推理任务中的有效性。
🧲相关工作
🔸研究界一直在积极探索慢思考推理系统,但都局限于特定领域(例如数学领域)或使用相对较弱的基础模型开发,使得实现的系统明显不如o1。
🔸DeepSeek和Qwen发布了类o1系统的API或检查点,使我们能够仔细检查实际的思维过程,而不是o1中的总结版本,这对于获取用于初步尝试的初始标记数据尤其重要。
🔸凭经验发现,用少量的长思维链数据对LLM进行微调可以显着提高其在复杂推理任务上的表现,推测o1可能会实现一个包含内部思想和最终解决方案的一次性解码过程。
📝重点思路
🔸模仿阶段:通过从现有的o1-like系统(如R1和QwQ)中提取长链思维数据,构建一个用于模仿学习的数据集。然后,使用这些数据对基础模型进行监督微调(SFT),以使其能够生成类似于长链思维的推理过程。
🔸探索阶段:通过让模型自主探索难题,生成新的正确轨迹(包括思维过程和解决方案),并将这些轨迹添加到训练数据中,以逐步改进模型的推理能力。
🔸自我改进阶段:通过迭代训练,使用改进后的模型生成更高质量的训练数据,并结合监督微调和直接偏好优化(DPO)等方法,进一步提升模型的推理能力。
🔎分析总结
🔸模仿学习的有效性:通过使用从o1-like系统中提取的长链思维数据进行监督微调,模型在复杂推理任务中的表现显著提升。
🔸探索和自我改进的效果:通过让模型自主探索难题并生成新的训练数据,模型的推理能力得到了进一步的提升。特别是在使用3900个示例进行蒸馏训练后,模型的表现接近了一些行业级系统。
🔸慢思考特点:与快速思考模式下生成的正式响应不同,慢思考模式下的思考过程通常以灵活、非正式的方式表达,有助于引导模型找到正确的解决方案路径。
🔸数据混合的影响:在训练数据中混合不同领域和难度级别的数据,能够有效提升模型的性能。特别是在数学领域的难题上,模型的表现尤为突出。
🔸迭代训练的局限性:尽管迭代训练在初始阶段能够显著提升模型性能,但随着迭代次数的增加,性能提升逐渐有限,甚至在某些基准测试中出现了波动。
💡个人观点
论文的核心在于通过“模仿、探索和自我改进”来开发和增强慢思考推理系统的能力。