随着全球城市化进程的加速与人类活动的频繁,土地利用及生态系统服务面临巨大的压力,水土流失、植被退化、生物多样性丧失等环境问题日益严重。如何在土地供需矛盾中维持生态安全、优化土地利用模式,成为当前生态学与土地规划领域的研究重点。
生态系统服务是指人类从生态系统中获得的各类效益,对应对城市发展挑战和实现可持续发展具有重要意义。随着人类活动加剧,土地利用发生快速变化,进而影响生态系统服务的供给和质量。因此,生态系统服务评估与未来土地规划的整合成为当今热门的研究课题。
情景分析方法,通过构建不同的土地利用情景,深入分析生态系统服务的变化与相互作用,为土地政策的制定提供理论依据。PLUS模型与InVEST模型作为两种常用的生态系统服务评估工具,广泛应用于土地利用情景模拟与生态系统服务定量化分析。结合AI技术(如ChatGPT),可以大幅提升研究效率,降低技术门槛,进一步推动生态学研究的深入发展。
本教程将结合AI技术与多平台软件(如R语言、ArcGIS Pro、ChatGPT)以及生态学模型(PLUS模型、InVEST模型),全面讲解生态系统服务的多情景模拟预测及其应用。通过数据、方法和实践三大维度,为学员提供从基础到进阶的系统学习路径,帮助学员深入理解和掌握以下技能:
●多情景预测与土地利用模式分析:基于历史土地利用数据,构建不同情景下的未来土地利用变化预测
●生态系统服务定量化评估:利用InVEST模型,进行碳储存、水资源调节、生态系统服务等功能的量化分析
●空间数据时空变化分析:利用GIS技术与AI工具分析空间数据的时空演变
●生态系统服务空间异质性分析:通过模型与数据分析,识别生态系统服务功能在空间上的异质性分布
●AI赋能的研究效率提升:学习如何使用ChatGPT辅助生成代码、自动撰写报告,提高研究效率并解决复杂问题
入门篇:介绍ArcGIS Pro的快速入门及基础操作,学习GIS数据源的获取与理解。
方法篇:深入讲解多源数据选择与统一,PLUS与InVEST模型的运行方法,空间数据的处理与时空变化分析。
实践篇:学习土地利用多情景预测方法、生态系统服务的量化与评价,并开展空间异质性归