R语言应用
文章平均质量分 89
小艳加油
这个作者很懒,什么都没留下…
展开
-
基于R语言机器学习遥感数据处理与模型空间预测;随机森林(RF)、极限梯度提升机(XGBoost)和支持向量机(SVM)等机器学习算法
在R语言中,随机森林的实现与应用非常方便,R语言提供了多种包用于构建和优化随机森林模型。R语言的随机森林实现不仅支持分类和回归任务,还支持处理多类别问题、处理缺失数据,以及评估变量重要性等功能。这些包通常具有高度优化的计算性能,能够处理大规模数据集,同时提供灵活的参数调整接口,方便用户根据具体需求进行模型调优。原创 2024-10-22 12:38:30 · 791 阅读 · 0 评论 -
零基础入门R语言结构方程模型SEM分析:lavaan VS piecewiseSEM、SEM全局估计和局域估计、潜变量分析、复合变量分析、贝叶斯SEM在生态学领域应用
利用开源软件R平台,以生态学领域研究问题为主线,如生物多样性、物种分布、生物入侵、生物地理格局、生物多样性与生态系统功能(BEF)、生态恢复、气候变化对物种分布影响等,通过理论讲解和实际操作相结合的方式,由浅入深地系统介绍结构方程模型的建立、拟合、评估、筛选和结果展示的全过程。原创 2024-10-11 12:50:30 · 1066 阅读 · 0 评论 -
基于R语言遥感随机森林建模与空间预测;遥感数据处理与特征提取;数据分析与可视化
R语言的随机森林实现不仅支持分类和回归任务,还支持处理多类别问题、处理缺失数据,以及评估变量重要性等功能。这些包通常具有高度优化的计算性能,能够处理大规模数据集,同时提供灵活的参数调整接口,方便用户根据具体需求进行模型调优。原创 2024-08-16 17:06:26 · 784 阅读 · 0 评论 -
基于现代R语言【Tidyverse、Tidymodel】的机器学习方法:回归分析、树形模型、集成学习、支持向量机、降维、聚类与分类等
机器学习涉及的理论和方法繁多,编程相当复杂,一直是阻碍机器学习大范围应用的主要困难之一,由此诞生了Python,R,SAS,STAT等语言辅助机器学习算法的实现。在各种语言中,R语言以编程简单,方法先进脱颖而出,本次机器学习基于现代R语言,原创 2024-06-03 12:33:14 · 566 阅读 · 0 评论 -
深入解读Meta分析:原理、公式、操作步骤及结果分析;R语言Meta回归分析、诊断分析、不确定性分析与精美作图
R语言拥有完整有效的数据处理、统计分析与保存机制,可以对数据直接进行分析和显示,命令格式简单、结果可读性强,包含众多针对Meta分析软件包,是进行Meta整合分析及评价的有效平台。本教程针对Meta分析原理、公式、操作步骤及结果分析,进阶应用进行详细解析,结合多个例子,熟练掌握Meta分析全流程和不确定性分析,并结合机器学习等方法讲解Meta分析在文献大数据的延伸应用。原创 2024-05-29 12:43:39 · 9987 阅读 · 3 评论 -
深入解析R语言的贝叶斯网络模型:构建、优化与预测;INLA下的贝叶斯回归;现代贝叶斯统计学方法;R语言混合效应(多水平/层次/嵌套)
贝叶斯网络是一种结合图论与统计学理论提出的新型模型。贝叶斯网络不但能够统合已有的各种统计学方法,如混合回归模型,LASSO,自回归模型,隐马模型等等;而且在很大程度上能够弥补统计学模型不能够进行因果推断的缺憾。原创 2024-05-24 12:38:47 · 1536 阅读 · 0 评论 -
混合效应模型(Mixed effect model)丨多水平模型(Multilevel model)分层模型(Hierarchical Model)嵌套模型(Nested Model)及贝叶斯实现
混合效应模型(Mixed effect model),即多水平模型(Multilevel model)/分层模型(Hierarchical Model)/嵌套模型(Nested Model),无疑是现代回归分析中应用最为广泛的统计模型,代表了现代回归分析主流发展方向。混合效应模型形式灵活可以应对现代科学研究中各种数据情况,与传统回归模型相比具有更为强大数据分析能力,且结果更为可信。原创 2023-10-18 15:39:47 · 15834 阅读 · 0 评论 -
Meta分析的选题与文献计量分析CiteSpace应用丨R语言Meta分析【数据清洗、精美作图、回归分析、诊断分析、不确定性及贝叶斯应用】
Meta分析是针对某一科研问题,根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法,对来源不同的研究成果进行收集、合并及定量统计分析的方法,最早出现于“循证医学”,现已广泛应用于农林生态,资源环境等方面。原创 2023-07-26 16:27:54 · 1105 阅读 · 1 评论 -
基于R语言经典地理加权回归,半参数地理加权回归、多尺度地理加权回归、地理加权主成分分析、地理加权判别分析等空间异质性数据分析
以地理加权回归为基础的一系列方法:经典地理加权回归,半参数地理加权回归、多尺度地理加权回归、地理加权主成分分析、地理加权判别分析是处理这类数据的有效模型。原创 2023-04-21 09:05:25 · 1164 阅读 · 0 评论 -
R语言应用之生物群落数据统计分析、贝叶斯方法、多元数据统计分析生态环境应用
R是用于统计分析、绘图的语言和操作环境。原创 2023-01-31 09:10:39 · 756 阅读 · 0 评论