目录
③基于R语言贝叶斯进阶:INLA下的贝叶斯回归、生存分析、随机游走、广义可加模型、极端数据的贝叶斯分析
④基于R语言的现代贝叶斯统计学方法(贝叶斯参数估计、贝叶斯回归、贝叶斯计算)
贝叶斯网络是一种结合图论与统计学理论提出的新型模型。贝叶斯网络不但能够统合已有的各种统计学方法,如混合回归模型,LASSO,自回归模型,隐马模型等等;而且在很大程度上能够弥补统计学模型不能够进行因果推断的缺憾。自贝叶斯网络模型在上个世纪80年代被正式提出以来,其已经被运用于生态、环境、医学、社会学等各方面的研究,取得了丰硕的成果;但是,贝叶斯网络模型理论较为复杂,体系庞大,形式复杂多样,很难被初学者掌握。
①基于R语言的贝叶斯网络模型的实践应用
本教程以开源的R语言为平台,通过理论和实践相结合的方法,系统介绍了贝叶斯网络结构学习,参数学习以及因果推断等全过程,对贝叶斯网络有较全面的了解,并能够用于科研和工作实践中。
专题一 R语言实现Bayesian Network分析的基本流程
R语言的数据类型与基本操作
R语言中图论的相关操作
贝叶斯网络的图表示与概率表示
基于bnlearn建立简单的贝叶斯网络
专题二 离散静态贝叶斯网络的构建
离散静态网络的结构学习
离散静态网络的参数估计
离散静态网络的推断
实例分析
专题三 连续分布下的贝叶斯网络
连续贝叶斯网络的结构学习
连续贝叶斯网络的参数估计
高斯贝叶斯网络的推断
实例分析
专题四 混合贝叶斯网络
混合分布情况下的处理
贝叶斯统计在混合网络中的应用
实例分析
专题五 动态贝叶斯网络
时间序列中变量的选择
时间相关性的处理
动态贝叶斯网络
实例分析
专题六 基于Gephi的网络作图初步
专题七 真实世界中的贝叶斯网络
Bootstrap与阈值选择
模型平均方法
非齐次动态贝叶斯网络
实例分析
注:请提前自备电脑及安装所需软件
②R语言贝叶斯方法在生态环境领域中的应用
本教程包括回归及结构方程模型概述及数据探索;R和Rstudio简介及入门和作图基础;R语言数据清洗-tidyverse包;贝叶斯回归与混合效应模型;贝叶斯空间自相关、时间自相关及系统发育相关数据分析;贝叶斯非线性数据分析;贝叶斯结构方程模型及统计结果作图等。教程不仅适合R语言和生态环境数据统计分析初学者,也适合有高阶应用需求的研究生和科研人员。将通过大量实例讲解,使大家能应对科研工作中复杂数据局面,选择合适模型,提高数据分析能力。
专题一:完成预习
专题二:R和Rstudio简介及入门和作图
专题三:R语言数据清洗-tidyverse包应用
专题四:贝叶斯回归模型-回归、方差及协防差分析
专题五:贝叶斯混合效应模型-数据分层和嵌套
专题六:贝叶斯计数数据分析
专题七:贝叶斯相关数据分析:时间、空间、系统发育相关数据
专题八:贝叶斯非线性关系数据分析:广义可加(混合)模型(BGAM/BGAMM)和非线性(混合)(BNLM/BNLMM)模型
专题九:贝叶斯结构方程模型(BSEM)
专题十:超越贝叶斯统计:因果推断
专题十一:贝叶斯统计结果作图
点击链接查看详情↓