逻辑回归那些事儿~

逻辑回归(logistic regression)被广泛用于分类预测,例如:银行通过客户的用户行为判断客户是否会流失,医院通过病人肿瘤的形态特征判断肿瘤是否为良性,电子邮箱通过对邮件信息的识别判断是否为垃圾邮件等等。作为目前最流行使用的一种学习算法,逻辑回归能非常有效地对数据进行分类。

1. 回归假设

h θ ( x ) = g ( θ T X ) h_θ (x)=g(θ^T X) hθ(x)=g(θTX),其中: X X X代表特征向量(即影响因子向量), θ T θ^T θT代表参数的转置矩阵, g g g 代表一个常用的逻辑函数,为S形函数(Sigmoid function),公式为: g ( z ) = 1 / ( 1 + e ( − z ) ) g(z)=1/(1+e^{(-z)} ) g(z)=1/(1+e(z))。合起来,我们可以得到逻辑回归的假设函数为:
h θ ( x ) = 1 / ( 1 + e ( − θ T X ) ) h_θ (x)=1/(1+e^{(-θ^T X)} ) hθ(x)=1/(1+e(θTX))
其中, θ T X θ^T X θTX是参数 θ θ θ和特征 X X X的向量运算,展开就是:
θ T X = θ 0 + θ 1 x 1 + θ 2 x 2 + . . . + θ n x n ( n 代 表 特 征 的 数 量 ) θ^T X=θ_0+θ_1 x_1+θ_2 x_2+...+θ_n x_n(n代表特征的数量) θTX=θ0+θ1x1+θ2x2+...+θnxnn

1)S形函数

  • 实际上,我们套用了S形函数进行逻辑回归的计算。这是个非常经典的分类函数,是机器学习入门必须掌握的基础知识。
  • 函数是一个分数,取值在0-1之间。
  • z < 0 z<0 z<0时, g ( z ) < 0.5 g(z)<0.5 g(z)<0.5;当 z = 0 z=0 z=0时, g ( z ) = 0.5 g(z)=0.5 g(z)=0.5;当 z > 0 z>0 z>0时, g ( z ) > 0.5 g(z)>0.5 g(z)>0.5
    image.png
  • S函数用python代码实现为:
import numpy as np
def sigmoid(z):
   return 1 / (1 + np.exp(-z))

2)假设判断

  • h θ ( x ) h_θ (x) hθ(x)表示的是:根据参数得出因变量y为1的概率/可能性(estimated probablity),即 h θ ( x ) = P ( y = 1 ∣ x ; θ ) h_θ (x)=P(y=1|x;θ) hθ(x)=P(y=1x;θ)
  • 一般地,我们判断:
    • h θ ( x ) < = 0.5 h_θ (x)<=0.5 hθ(x)<=0.5,则分类为 y = 0 y=0 y=0 h θ ( x ) > 0.5 h_θ (x)>0.5 hθ(x)>0.5,则分类为 y = 1 y=1 y=1

举个栗子
假设病人患恶性肿瘤为 y = 1 y=1 y=1,未患恶性肿瘤为 y = 0 y=0 y=0。现根据肿瘤大小( x 1 x_1 x1)和肿瘤颜色( x 2 x_2 x2)两个特征可以得到逻辑回归模型为: h θ ( x ) = g ( θ T X ) = g ( θ 0 + θ 1 x 1 + θ 2 x 2 ) = 1 / ( 1 + e − ( θ 0 + θ 1 x 1 + θ 2 x 2 ) ) h_θ (x)=g(θ^T X)=g(θ_0+θ_1 x_1+θ_2 x_2)=1/(1+e^{-(θ_0+θ_1 x_1+θ_2 x_2)}) hθ(x)=g(θTX)=g(θ0+θ1x1+θ2x2)=1/(1+e(θ0+θ1x1+θ2x2))
其中,参数 θ 0 = − 0.8 , θ 1 = 0.01 , θ 2 = − 0.05 θ_0=-0.8,θ_1=0.01,θ_2=-0.05 θ0=0.8,θ1=0.01,θ2=0.05,则模型为:
h θ ( x ) = 1 / ( 1 + e − ( − 0.8 + 0.01 x 1 − 0.05 x 2 ) ) h_θ (x)=1/(1+e^{-(-0.8+0.01 x_1-0.05 x_2)}) hθ(x)=1/(1+e(0.8+0.01x10.05x2))
已知一名病人的肿瘤大小为1cm,肿瘤颜色分类为5,则代入模型计算得到 h θ ( x ) = 0.26 h_θ (x)=0.26 hθ(x)=0.26,说明病人患恶性肿瘤的概率为0.26,概率低于0.5,由此我们将病人分类为“未患肿瘤( y = 0 y=0 y=0)”。

3)决策边界

  • 决策边界是对分类预测的可视化。如上文所说,一般以 h θ ( x ) = 0.5 h_θ (x)=0.5 hθ(x)=0.5进行分类,而此时 z = θ T X = 0 z=θ^T X=0 z=θTX=0
    image.png
  • 当特征变量 X X X只有1-3个时,我们可以通过散点图画出 θ T X = 0 θ^T X=0 θTX=0的决策边界,帮助我们更好地理解分类正确率,但画出决策边界不是必须的。因为大部分时候,特征变量都会多于3个,这时,我们就很难画出决策边界,一般通过混淆矩阵判断预测的准确度。

2.特征缩放

  • 特征缩放(feature scaling)其实就是将所有的特征变量缩放到相近的尺度,以便减少计算量,更快地构建模型,最常用的方法是通过均值归一化(mean normalization)将所有特征的尺度都尽量缩放到-1到1之间。即:
    x n = ( x n − μ n ) / s n , ( μ n 是 平 均 值 , s n 为 标 准 差 ) x_n=(x_n-μ_n)/s_n ,(μ_n是平均值,s_n为标准差) xn=(xnμn)/sn(μnsn)
  • 这是模型构建前必做的数据预处理动作,能有效减少计算量。
  • 特征缩放用Python代码实现为:
import numpy as np
def featurescaling(X):
  X=(X-np.average(X))/np.std(X)
  return X

3. 损失函数

  • 构建预测模型就需要定义损失函数。损失函数也叫代价函数(loss function),简单理解,就是计算预测值与实际值之间的误差。通过计算损失(loss),我们才能判断模型的准确度。通用公式如下:

J ( θ ) = 1 / m ∑ ( i = 1 ) m C o s t ( h θ ( x ( i ) ) , y ( i ) ) ( m 表 示 样 本 数 量 ) J(θ)=1/m ∑_{(i=1)}^mCost(h_θ (x^{(i)} ),y^{(i)})(m表示样本数量) J(θ)=1/m(i=1)mCost(hθ(x(i)),y(i))m
对于逻辑回归,我们采用对数计算损失,其中:
image.png
简化可以得到:
C o s t ( h θ ( x ) , y ) = − y × l o g ( h θ ( x ) ) − ( 1 − y ) × l o g ( 1 − h θ ( x ) ) Cost(h_θ (x),y)=-y×log(h_θ (x))-(1-y)×log(1-h_θ (x)) Cost(hθ(x),y)=y×log(hθ(x))(1y)×log(1hθ(x))
最终可以得到逻辑回归的代价函数为:
J ( θ ) = 1 / m ∑ ( i = 1 ) m [ − y × l o g ( h θ ( x ) ) − ( 1 − y ) × l o g ( 1 − h θ ( x ) ) ] J(θ)=1/m ∑_{(i=1)}^m[-y×log(h_θ (x))-(1-y)×log(1-h_θ (x)) ] J(θ)=1/m(i=1)m[y×log(hθ(x))(1y)×log(1hθ(x))]

  • 损失函数用Python代码实现为:
import numpy as np
def costfunction(theta, X, y):
  theta = np.matrix(theta)
  X = np.matrix(X)
  y = np.matrix(y)
  part_1 = np.multiply(-y, np.log(sigmoid(X @ theta.T)))# 引用了sigmoid函数
  part_2 = np.multiply((1 - y), np.log(1 - sigmoid(X @ theta.T)))
  return np.sum(part_1 - part_2) / (len(X))

4.优化算法:梯度下降

  • 既然我们通过损失函数计算了损失,那么为了减少损失,我们就需要对参数进行不断的优化。
  • 梯度下降(gradient descent)是一个用来求函数最小值的算法,非常强大可靠,主要是通过代价函数的导数更新优化参数,直至达到代价函数的局部最小值,通用公式为:
    R e p e a t θ j : = θ j − α ∂ / ∂ θ j J ( θ ) ( 同 时 更 新 所 有 的 θ j ) Repeat { θ_j:=θ_j-α ∂/∂θ_j J(θ) (同时更新所有的θ_j ) } Repeatθj:=θjα/θjJ(θ)(θj)
    根据微积分知识,简化后可以得到 θ j : = θ j − α / m ∑ ( i = 1 ) m [ ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) ] , ( α 为 学 习 速 度 ( l e a r n i n g r a t e ) , m 为 样 本 数 量 ) θ_j:=θ_j-α /m ∑_{(i=1)}^m[(h_θ (x^{(i)})-y^{(i)})x_j^{(i)} ], (α为学习速度(learning rate),m为样本数量) θj:=θjα/m(i=1)m[(hθ(x(i))y(i))xj(i)],(α(learningrate)m)
  • α α α控制我们按多大的幅度去更新参数。如果a太小,梯度下降计算慢;如果a太大,那么梯度下降可能会越过最低点,导致无法收敛,甚至发散。
  • 梯度下降用Python代码实现为:
def gradientDescent(X, y, theta, alpha, iters):#iters表示更新迭代次数
    theta = np.matrix(theta)
    X = np.matrix(X)
    y = np.matrix(y)
    
    temp = np.matrix(np.zeros(theta.shape))# 设置temp作为theta的转换
    parameters = int(theta.ravel().shape[1]) # 计算参数的数量
    cost = np.zeros(iters)
    
    # 设置迭代循环
    for i in range(iters): 
        error = sigmoid(X @ theta.T) - y # 引用sigmoid函数
        
        for j in range(parameters):
            term = np.multiply(error, X[:,j])
            temp[0,j] = theta[0,j] - ((alpha / len(X)) * np.sum(term))
            
        theta = temp
        cost[i] = costfunction(theta, X, y) # 引用costfunction函数
        
    return theta, cost
  • 除了梯度下降算法以外,还有很多其他更高级的优化算法,本文就不多赘述了。

4. 模板代码

  • 了解了逻辑回归的数学知识之后,实际工作中,我们不需要自己定义损失函数和优化算法,有成熟的机器学习库可供我们直接调用。比如,sklearn中逻辑回归函数可调用的优化算法就有:liblinear, newton-cg, lbfgs, sag 和 saga,默认使用lbfgs。
  • 下面是调用sklearn库的模板代码:
# 1.创建X和y
X = df.iloc[:,:-1].values # 需根据实际情况更改
y = df.iloc[:,-1].values # 需根据实际情况更改

# 2.将数据分成训练集和测试集
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=0)

# 3.特征缩放(Feature Scaling)
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)#转换变量
X_test = sc_X.fit_transform(X_test)#转换变量

# 4.利用逻辑回归进行分类
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression(random_state=0)
classifier.fit(X_train,y_train)

# 5.预测测试集中的y值
y_pred = classifier.predict(X_test)

# 6.用混淆矩阵检测准确率
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test,y_pred)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值