不同走法的数量
Problem Description
有一楼梯共M级,刚开始时你在第一级,若每次只能跨上一级或二级,要走上第M级,共有多少种走法?
Input
输入数据首先包含一个整数N,表示测试实例的个数,然后是N行数据,每行包含一个整数M(1<=M<=40),表示楼梯的级数。
Output
对于每个测试实例,请输出不同走法的数量
Sample Input
2
2
3
Sample Output
1
2
思路:
设:dp[i]为走到第i阶的步数
则:
状态转移方程:dp[i]=dp[i-1]+dp[i-2];
边界条件:dp[1]=1,dp[2]=1;
注意从第三阶开始走
#define lcm(a, b) a / gcd(a, b) * b
#include<iostream>
#include<stdio.h>
#include<cstring>
#include<cctype>
#include<queue>
#include<stack>
#include<cmath>
#include<algorithm>
#include<set>
using namespace std;
const int maxn = 105;
float b[maxn], a[3];
int main() {
int n;
int dp[maxn];
scanf("%d", &n);
while (n--) {
int s;
cin >> s;
dp[1] = 1, dp[2] = 1;
for (int i = 3; i <= s; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
printf("%d\n", dp[s]);
}
}