不同走法的数量

该博客讨论了一个经典的动态规划问题,即如何计算在只能跨一级或两级的情况下,到达楼梯顶部的不同走法数量。通过状态转移方程dp[i]=dp[i-1]+dp[i-2],并设置初始边界条件dp[1]=1, dp[2]=1,可以求解任意楼梯级数的走法。示例中给出了对于2级和3级楼梯的走法计数。
摘要由CSDN通过智能技术生成

不同走法的数量

Problem Description
有一楼梯共M级,刚开始时你在第一级,若每次只能跨上一级或二级,要走上第M级,共有多少种走法?

Input
输入数据首先包含一个整数N,表示测试实例的个数,然后是N行数据,每行包含一个整数M(1<=M<=40),表示楼梯的级数。

Output
对于每个测试实例,请输出不同走法的数量

Sample Input
2
2
3

Sample Output
1
2

思路:

设:dp[i]为走到第i阶的步数

则:

状态转移方程:dp[i]=dp[i-1]+dp[i-2];

边界条件:dp[1]=1,dp[2]=1;

注意从第三阶开始走

#define lcm(a, b) a / gcd(a, b) * b
#include<iostream>
#include<stdio.h>
#include<cstring>
#include<cctype>
#include<queue>
#include<stack>
#include<cmath>
#include<algorithm>
#include<set>
using namespace std;

const int maxn = 105;
float  b[maxn], a[3];

int main() {
	int n;
	int dp[maxn];
	scanf("%d", &n);
	while (n--) {
		int s;
		cin >> s;
		dp[1] = 1, dp[2] = 1;
		for (int i = 3; i <= s; i++) {
			dp[i] = dp[i - 1] + dp[i - 2];
		}
		printf("%d\n", dp[s]);
	}
	
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

追梦_赤子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值