数值分析—非线性方程的数值解

研究背景

形如 x − t a n x = 0 x-tanx=0 xtanx=0 x l n x + e − x 2 + s i n x = 0 xlnx+e^{-x^2}+sinx=0 xlnx+ex2+sinx=0等称为非线性方程,自变量之间并非简单的线性关系,这种问题我们无法通过其结构求解,需要其他的逼近方式,本章将基于该问题介绍两种方法——二分法,迭代法。

二分法

预备知识

零点定理
f ( x ) ∈ [ a , b ] f(x)\in[a,b] f(x)[a,b] f ( a ) f ( b ) < 0 f(a)f(b)<0 f(a)f(b)<0,则 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)内至少有一个零点,若 f ( x ) f(x) f(x)为单调函数,则 f ( x ) f(x) f(x)有唯一零点。

重根判别方法
f ( x ) f(x) f(x) x x x有n阶导数,则 x x x f ( x ) = 0 f(x)=0 f(x)=0的m重根的充要条件为:
f ( x ) = f ′ ( x ) = f m − 1 ( x ) = 0 且 f m ( x ) ! = 0 f(x)=f'(x)=f^{m-1}(x)=0且f^m(x)!=0 f(x)=f(x)=fm1(x)=0fm(x)!=0

求实根的二分法

基本思想为:
将有根区间一分为二,等分为两个区间,判断根再哪一个更小的区间,舍去无根的小区间,再把有根的小区间等分,如此重复,直到找到满足精度的近似根。

算法流程:
取终点 x 0 = a + b 2 x_0=\frac{a+b}{2} x0=2a+b,若 f ( x 0 ) = 0 , x 0 f(x_0)=0,x_0 f(x0)=0,x0为所求,否则计算 f ( a ) f ( x 0 ) f(a)f(x_0) f(a)f(x0)的符号, > 0 >0 >0取区间 [ x 0 , b ] [x_0,b] [x0,b] < 0 <0 <0 [ a , x 0 ] [a,x_0] [a,x0],重复上述过程,无穷多次后即为精确解 lim ⁡ k → ∞ x k = x \lim_{k \to \infty}x_k=x limkxk=x,但计算中不可能迭代无穷多次,也不可能得知精确解,故一般采用前后两次迭代逼近的程度来衡量, ∣ x k − x k − 1 ∣ ≤ b k − a k 2 = b − a 2 k + 1 |x_k-x_{k-1}|\le\frac{b_k-a_k}{2}=\frac{b-a}{2^{k+1}} xkxk12bkak=2k+1ba,取精度 b − a 2 k + 1 < ε \frac{b-a}{2^{k+1}}<\varepsilon 2k+1ba<ε,迭代步数为 k > l n ( b − a ) − l n 2 ε l n 2 k>\frac{ln(b-a)-ln2\varepsilon}{ln2} k>ln2ln(ba)ln2ε

例题:二分法求 f ( x ) = x 2 − x − 1 = 0 f(x)=x^2-x-1=0 f(x)=x2x1=0的正根,要求误差不超过0.05。
解:
f ( x ) = x 2 − x − 1 , f ( 1 ) = − 1 < 0 , f ( 2 ) = 1 > 0 f(x)=x^2-x-1,f(1)=-1<0,f(2)=1>0 f(x)=x2x1,f(1)=1<0,f(2)=1>0,故有根区间为 [ − 1 , 2 ] [-1,2] [1,2],该函数在区间内单调, k > − l n 0.1 l n 2 = 10 l n 2 = 3.3 k>\frac{-ln0.1}{ln2}=\frac{10}{ln2}=3.3 k>ln2ln0.1=ln210=3.3,取步长k=4,求其根表示为:

k a k a_k ak b k b_k bk x k x_k xkf(x)符号
0121.5-
11.521.75+
21.51.751.625+
31.51.6251.5625-
41.56251.6251.59375

答:根为1.59375。

该方法实现简单,普及性高,对方程只要求其连续即可,但收敛速度缓慢,下面介绍一种加速收敛的方法—迭代法。

迭代法

基本思想

f ( x ) = 0 < = > x = g ( x ) f(x)=0<=>x=g(x) f(x)=0<=>x=g(x) g ( x ) g(x) g(x)为迭代函数, x k + 1 = g ( x k ) x_{k+1}=g(x_k) xk+1=g(xk),给定 x 0 x_0 x0可计算 x 1 . . . . x n x_1....x_n x1....xn,若该数列收敛,则称迭代法 x k + 1 = g ( x k ) x_{k+1}=g(x_k) xk+1=g(xk)收敛,否则发散。

x ∗ x^* x满足 x ∗ = g ( x ∗ ) x^*=g(x^*) x=g(x)则称 x ∗ x^* x g ( x ) g(x) g(x)的不动点。
lim ⁡ k → ∞ x k = x ∗ , g ( x ) \lim_{k \to \infty}x_k=x^*,g(x) limkxk=xg(x)连续, x ∗ = lim ⁡ k → ∞ x k + 1 = lim ⁡ k → ∞ g ( x k ) = g ( lim ⁡ k → ∞ x k ) = g ( x ∗ ) x^*=\lim_{k \to \infty}x_{k+1}=\lim_{k \to \infty}g(x_k)=g(\lim_{k \to \infty}x_k)=g(x^*) x=limkxk+1=limkg(xk)=g(limkxk)=g(x)

该过程重点在于:
1,如果构造 g ( x ) g(x) g(x)
2, g ( x ) g(x) g(x)满足何种条件能保证数列 x n {x_n} xn收敛
3,收敛速度如何衡量

该方法的几何意义为以直代曲,用切线零点代替曲线零点,不断逼近坐标轴的过程。

迭代格式的适定性与收敛性

定义:如果 x 0 ∈ [ a , b ] x_0\in[a,b] x0[a,b],若按 x k + 1 = g ( x k ) x_{k+1}=g(x_k) xk+1=g(xk)生成的序列 x k ∈ [ a , b ] {x_k}\in[a,b] xk[a,b],则称迭代格式是适定的,适定性是迭代格式能够继续下去的重要条件。

例如:求 x e x − 1 = 0 xe^{x}-1=0 xex1=0 x = 0.5 x=0.5 x=0.5附近的根。
解: x = e − x x=e^{-x} x=ex,构造迭代格式 x k + 1 = e − x k , x 0 = 0.5 x_{k+1}=e^{-x_k},x_0=0.5 xk+1=exk,x0=0.5,可继续迭代
e x = 1 x , x = − l n x e^x=\frac{1}{x},x=-lnx ex=x1,x=lnx,构造 x k + 1 = − l n x k , x 0 = 0.5 , x 4 < 0 x_{k+1}=-lnx_k,x_0=0.5,x_4<0 xk+1=lnxk,x0=0.5,x4<0时终止

定理一:设 g ( x ) ∈ [ a , b ] g(x)\in[a,b] g(x)[a,b],且满足如下条件:
1,任意 x ∈ [ a , b ] x\in[a,b] x[a,b],总有 g ( x ) ∈ [ a , b ] g(x)\in[a,b] g(x)[a,b]
2,存在 L ∈ [ 0 , 1 ] , 使 ∣ g ( x ) − g ( y ) ∣ ≤ L ∣ x − y ∣ , x , y 为 [ a , b ] 内的任意数 L\in[0,1],使|g(x)-g(y)|\le L|x-y|,x,y为[a,b]内的任意数 L[0,1],使g(x)g(y)Lxyxy[a,b]内的任意数
g ( x ) g(x) g(x) [ a , b ] [a,b] [a,b]上存在唯一不动点 x ∗ x^* x对任意 x ∈ [ a , b ] x\in[a,b] x[a,b]迭代法适定且收敛,但该条件很不好证明,故多采用定义二

定理二:若 g ( x ) ∈ [ a , b ] g(x)\in[a,b] g(x)[a,b]且满足如下条件:
1,任意 x ∈ [ a , b ] ,有 g ( x ) ≤ [ a , b ] x\in[a,b],有g(x)\le[a,b] x[a,b],有g(x)[a,b]
2,存在 0 ≤ L ≤ 1 ,使对任意 x ∈ [ a , b ] 有 ∣ g ′ ( x ) ∣ ≤ L 0\le L\le1,使对任意x\in[a,b]有|g'(x)|\le L 0L1,使对任意x[a,b]g(x)L,该定理用导数代替了验证过程。
x k + 1 = g ( x k ) ≤ L k 1 − L ∣ x − x 0 ∣ x_{k+1}=g(x_k)\le\frac{L^k}{1-L}|x-x_0| xk+1=g(xk)1LLkxx0

注:
1,不等式为停机标准, ∣ x k + 1 − x k ∣ < ε |x_{k+1}-x_k|<\varepsilon xk+1xk<ε时, ∣ x ∗ − x k ∣ ≤ ε 1 − L |x^*-x^k|\le\frac{\varepsilon}{1-L} xxk1Lε
2,先验估计,用于估计达到 ε \varepsilon ε精度所需迭代的步数为
L k 1 − L ∣ x 1 − x 0 ∣ < ε \frac{L^k}{1-L}|x_1-x_0|<\varepsilon 1LLkx1x0<ε,从而 k > l n ( − ( 1 − L ) ε ( x 1 − x 0 ) ) l n L k>\frac{ln(\frac{-(1-L)\varepsilon }{(x_1-x_0)})}{lnL} k>lnLln((x1x0)(1L)ε)
3,L越小收敛速度越快。

局部收敛性与收敛阶

定义 x ∗ 为 g ( x ) x^*为g(x) xg(x)的不动点,对 δ > 0 , 称 N ( x ∗ , δ ) = [ x ∗ − δ , x ∗ + δ ] \delta>0,称N(x^*,\delta)=[x^*-\delta,x^*+\delta] δ>0,N(x,δ)=[xδ,x+δ] x ∗ x^* x的一个邻域,若存在一个邻域使对任意 x ∈ N ( x ∗ , δ ) x\in N(x^*,\delta) xN(x,δ) x k + 1 = g ( x k ) x_{k+1}=g(x_k) xk+1=g(xk)生成的 x k ∈ N ( x ∗ , δ ) {x_k}\in N(x^*,\delta) xkN(x,δ) lim ⁡ x → ∞ x k = x ∗ \lim_{x \to \infty}x_k=x^* limxxk=x,则称迭代格式具有迭代收敛性。
即在邻域内无穷次迭代后能获得精确解。

定理一:设 g ( x ) 在 x = g ( x ) g(x)在x=g(x) g(x)x=g(x)的根 x ∗ x^* x邻域内有连续的一阶导数,且 ∣ g ′ ( x ∗ ) ∣ < 1 |g'(x^*)|<1 g(x)<1,迭代法具有局部收敛性。
注:实际使用时往往用 ∣ g ′ ( x 0 ) ∣ < 1 |g'(x_0)|<1 g(x0)<1代替

n阶导数<1收敛,则收敛阶为n。

例题:迭代函数 g ( x ) = x + c ( x 2 − 3 ) g(x)=x+c(x^2-3) g(x)=x+c(x23),讨论1,写出迭代格式,产生 k {k} k收敛于 3 \sqrt{3} 3 ,问c应为何值?2,c为何值时收敛速度最快?
解:1,迭代格式 x k + 1 = g ( x k ) = x k + c ( x k 2 − 3 ) , g ′ ( x ) = 1 + 2 c x , ∣ g ′ ( 3 ) ∣ = ∣ 1 + 2 3 c ∣ < 1 = > − 3 2 < c < 0 x_{k+1}=g(x_k)=x_k+c(x_k^2-3),g'(x)=1+2cx,|g'(\sqrt{3})|=|1+2\sqrt{3}c|<1=>-\frac{\sqrt{3}}{2}<c<0 xk+1=g(xk)=xk+c(xk23)g(x)=1+2cxg(3 )=∣1+23 c<1=>23 <c<0
2, g ′ ( 3 ) = 0 , 1 + 2 3 c = 0 , c = − 3 6 g'(\sqrt{3})=0,1+2\sqrt{3}c=0,c=-\frac{\sqrt{3}}{6} g(3 )=0,1+23 c=0,c=63 收敛最快

Newton迭代法

基本思想:满足一般理论的特殊迭代法, f ( x ) = 0 f(x)=0 f(x)=0先假设 x k x_k xk f ( x ) = 0 f(x)=0 f(x)=0的近似根, f ′ ( x k ) ! = 0 f'(x_k)!=0 f(xk)!=0,将 f ( x ) f(x) f(x) x k x_k xk处作Taylor展开, f ( x ) ≈ f ( x k ) + f ′ ( x k ) ( x − x k ) + f ′ ′ ( ξ ) 2 ! ( x − x k ) 2 f(x)\approx f(x_k)+f'(x_k)(x-x_k)+\frac{f''(\xi)}{2!}(x-x_k)^2 f(x)f(xk)+f(xk)(xxk)+2!f′′(ξ)(xxk)2,舍去余项后 f ( x ) ≈ f ( x k ) + f ′ ( x k ) ( x − x k ) f(x)\approx f(x_k)+f'(x_k)(x-x_k) f(x)f(xk)+f(xk)(xxk) f ( x k ) + f ′ ( x k ) ( x − x k ) = 0 f(x_k)+f'(x_k)(x-x_k)=0 f(xk)+f(xk)(xxk)=0,故 x = x k − f ( x k ) f ′ ( x k ) x=x_k-\frac{f(x_k)}{f'(x_k)} x=xkf(xk)f(xk),不动点带入获得迭代函数 g ( x ) = x − f ( x ) f ′ ( x ) g(x)=x-\frac{f(x)}{f'(x)} g(x)=xf(x)f(x)

该方法的几何意义是以直代曲,沿曲线方向不断作切线,和x轴的交点作为下一次切线起点,形成一个不断逼近 x ∗ x^* x的数列。

例题:Newton迭代法求 f ( x ) = x 3 + 2 x − 6 f(x)=x^3+2x-6 f(x)=x3+2x6在1.5附近的根。
解: f ′ ( x ) = 3 x 2 + 2 f'(x)=3x^2+2 f(x)=3x2+2,Newton迭代公式 x k + 1 = x k − x k 3 + 2 x k − 6 3 x k 2 + 2 x_{k+1}=x_k-\frac{x_k^3+2x_k-6}{3x_k^2+2} xk+1=xk3xk2+2xk3+2xk6,取 x 0 = 1.5 x_0=1.5 x0=1.5迭代运算, x 1 = 1.4571429 , x 2 = 1.4561647 x_1=1.4571429,x_2=1.4561647 x1=1.4571429x2=1.4561647
可以看到Newton迭代法的收敛速度还是比较快的。

Newton迭代法的收敛性与收敛阶

局部收敛性定理
x ∗ x^* x f ( x ) = 0 f(x)=0 f(x)=0的单根,即 f ( x ∗ ) = 0 , f ′ ( x ∗ ) ! = 0 f(x^*)=0,f'(x^*)!=0 f(x)=0,f(x)!=0,则Newton迭代格式 x k + 1 = x k − f ( x k ) f ′ ( x k ) x_{k+1}=x_k-\frac{f(x_k)}{f'(x_k)} xk+1=xkf(xk)f(xk)至少二阶收敛。

非局部收敛性定理
f ( x ) ∈ c 2 [ a , b ] f(x)\in c^2[a,b] f(x)c2[a,b]且满足如下条件:
1, f ( a ) f ( b ) < 0 f(a)f(b)<0 f(a)f(b)<0
2, f ′ ( x ) ! = 0 , 任意 x ∈ [ a , b ] f'(x)!=0,任意x\in [a,b] f(x)!=0,任意x[a,b]
3, x ∈ [ a , b ] 时,有 f ′ ( x ) 不变号 x\in[a,b]时,有f'(x)不变号 x[a,b]时,有f(x)不变号
4, 任意 x 0 ∈ [ a , b ] , 使 f ( x 0 ) f ′ ′ ( x 0 ) > 0 任意x_0\in[a,b],使f(x_0)f''(x_0)>0 任意x0[a,b],使f(x0)f′′(x0)>0
则由Newton迭代格式确定的 x k {x_k} xk收敛于 f ( x ) = 0 f(x)=0 f(x)=0 [ a , b ] [a,b] [a,b]有唯一根 x ∗ x^* x

简化后的Newton法:
该迭代法主要的计算量来自导数,故简化后采用 x k + 1 = x − f ( x ) C x_{k+1}=x-\frac{f(x)}{C} xk+1=xCf(x)用常数C代替之, C = f ′ ( x 0 ) C=f'(x_0) C=f(x0),该方法使用固定点的导数作为常数来代替后续导数计算,固然简化了计算,但收敛速度也随之下降。

求重根的Newton法

x ∗ x^* x f ( x ) = 0 f(x)=0 f(x)=0的重根, f ( x ∗ ) = f ′ ( x ∗ ) = . . . = f n + 1 ( x ∗ ) = 0 f(x^*)=f'(x^*)=...=f^{n+1}(x^*)=0 f(x)=f(x)=...=fn+1(x)=0 f n ( x ∗ ) ! = 0 f^n(x^*)!=0 fn(x)!=0 f ( x ) = ( x − x ∗ ) A ( x ) f(x)=(x-x^*)A(x) f(x)=(xx)A(x),显然 A ( x ∗ ) ! = 0 A(x^*)!=0 A(x)!=0

Newton迭代法 x k + 1 = x k − f ( x k ) f ′ ( x k ) , g ( x ) = x − f ( x ) f ′ ( x ) , g ′ ( x ∗ ) < 1 x_{k+1}=x_k-\frac{f(x_k)}{f'(x_k)},g(x)=x-\frac{f(x)}{f'(x)},g'(x^*)<1 xk+1=xkf(xk)f(xk)g(x)=xf(x)f(x)g(x)<1收敛, g ′ ( x ) = f ( x ) f ′ ′ ( x ) [ f ′ ( x ) ] 2 g'(x)=\frac{f(x)f''(x)}{[f'(x)]^2} g(x)=[f(x)]2f(x)f′′(x),故 g ′ ( x ∗ ) = f ( x ∗ ) f ′ ′ ( x ∗ ) [ f ′ ( x ∗ ) ] 2 = lim ⁡ x → x ∗ g ( x ) − g ( x ∗ ) x − x ∗ g'(x^*)=\frac{f(x^*)f''(x^*)}{[f'(x^*)]^2}=\lim_{x\to x^* \frac{g(x)-g(x^*)}{x-x^*}} g(x)=[f(x)]2f(x)f′′(x)=limxxxxg(x)g(x),最后很复杂,一同操作后得证 g ′ ( x ∗ ) = 1 − 1 m g'(x^*)=1-\frac{1}{m} g(x)=1m1

例题 x 3 − 3 x 2 + 4 = 0 x^3-3x^2+4=0 x33x2+4=0,试用Newton迭代法求 x ∗ = 2 x^*=2 x=2,并证明收敛性,求收敛阶。
解: f ( x ) = x 3 − 3 x 2 + 4 , f ′ ( x ) = 3 x 2 − 6 x , x k + 1 = x k − f ( x k ) f ′ ( x k ) = x k − x k 3 − 3 x k 2 + 4 3 x k 2 − 6 x k f(x)=x^3-3x^2+4,f'(x)=3x^2-6x,x_{k+1}=x_k-\frac{f(x_k)}{f'(x_k)}=x_k-\frac{x_k^3-3x_k^2+4}{3x_k^2-6x_k} f(x)=x33x2+4f(x)=3x26xxk+1=xkf(xk)f(xk)=xk3xk26xkxk33xk2+4,则 g ( x ) = x − x 3 − 3 x 2 + 4 3 x 2 − 6 x g(x)=x-\frac{x^3-3x^2+4}{3x^2-6x} g(x)=x3x26xx33x2+4,若 ∣ g ′ ( 2 ) ∣ < 1 |g'(2)|<1 g(2)<1收敛, x ∗ = 2 x^*=2 x=2 f ( x ) f(x) f(x)的二重根,根据 1 − 1 m = > ∣ g ′ ( 2 ) ∣ = 1 2 < 1 1-\frac{1}{m}=>|g'(2)|=\frac{1}{2}<1 1m1=>g(2)=21<1故收敛且线性收敛。

Newton法改进

1, f ( x ) = 0 f(x)=0 f(x)=0的重根 x ∗ x^* x的重数m已知,则可得到 x k + 1 = x k − m f ( x k ) f ′ ( x k ) , g ( x ) = x − m f ( x ) f ′ ( x ) , g ′ ( x ∗ ) = 1 − m 1 m = 0 x_{k+1}=x_k-m\frac{f(x_k)}{f'(x_k)},g(x)=x-m\frac{f(x)}{f'(x)},g'(x^*)=1-m\frac{1}{m}=0 xk+1=xkmf(xk)f(xk)g(x)=xmf(x)f(x)g(x)=1mm1=0,故至少平方收敛。

2, f ( x ) = 0 f(x)=0 f(x)=0的重根 x ∗ x^* x的重数m未知,令 u ( x ) = f ( x ) f ′ ( x ) u(x)=\frac{f(x)}{f'(x)} u(x)=f(x)f(x),若 x ∗ x^* x f ( x ) f(x) f(x)的m重根, x ∗ x^* x f ′ ( x ) f'(x) f(x)的m-1重根, x ∗ x^* x必为 u ( x ) u(x) u(x)的单根,只需构造 u ( x ) = 0 u(x)=0 u(x)=0的单根Newton法, x k + 1 = x k − u ( x k ) u ′ ( x k ) , u ′ ( x ) = [ f ′ ( x ) ] 2 − f ( x ) f ′ ( x ) [ f ′ ( x ) ] 2 , x k + 1 = x k − f ( x k ) f ′ ( x k ) [ f ′ ( x k ) ] 2 − f ( x k ) f ′ ′ ( x k ) x_{k+1}=x_k-\frac{u(x_k)}{u'(x_k)},u'(x)=\frac{[f'(x)]^2-f(x)f'(x)}{[f'(x)]^2},x_{k+1}=x_k-\frac{f(x_k)f'(x_k)}{[f'(x_k)]^2-f(x_k)f''(x_k)} xk+1=xku(xk)u(xk),u(x)=[f(x)]2[f(x)]2f(x)f(x),xk+1=xk[f(xk)]2f(xk)f′′(xk)f(xk)f(xk),至少平方收敛。

例题1:设 f ( x ) = x 4 − 6 x 2 + 8 x − 3 f(x)=x^4-6x^2+8x-3 f(x)=x46x2+8x3,求 x 1 = 3 , x 2 = 1 x_1=3,x_2=1 x1=3,x2=1的二阶局部收敛的Newton法。
解:首先判断单根还是重根, f ′ ( x ) = 4 x 3 − 12 x + 8 , x 1 = 3 , f ( − 3 ) = 0 , f ′ ( − 3 ) ! = 0 f'(x)=4x^3-12x+8,x_1=3,f(-3)=0,f'(-3)!=0 f(x)=4x312x+8,x1=3,f(3)=0,f(3)!=0,所以 x 1 = 3 x_1=3 x1=3为单根,用二阶收敛的呢我同法, x k + 1 = x k − x k 4 − 6 x k 2 + 8 x k − 3 4 x k 3 − 12 x k + 8 x_{k+1}=x_k-\frac{x_k^4-6x_k^2+8x_k-3}{4x_k^3-12x_k+8} xk+1=xk4xk312xk+8xk46xk2+8xk3
x 2 = 1 , f ( 1 ) = 0 , f ′ ( 1 ) = 0 , f ′ ′ ( 1 ) = 0 , f ′ ′ ′ ( 1 ) ! = 0 x_2=1,f(1)=0,f'(1)=0,f''(1)=0,f'''(1)!=0 x2=1,f(1)=0,f(1)=0,f′′(1)=0,f′′′(1)!=0,所以 x 2 = 1 x_2=1 x2=1为三重根,方法同上,二阶收敛的Newton法 x k + 1 = x k − 3 x k 4 − 6 x k 2 + 8 x k − 3 4 x k 3 − 12 x k + 8 x_{k+1}=x_k-3\frac{x_k^4-6x_k^2+8x_k-3}{4x_k^3-12x_k+8} xk+1=xk34xk312xk+8xk46xk2+8xk3

总结

本章介绍了非线性方程的数值解法,二分法实现简单,但收敛很慢,迭代法主要是Newton迭代法,用泰勒公式近似方程,着重分析其收敛性和收敛阶,该章公式很多很杂,大量篇幅在于分析性质而非单纯计算,到整理完毕整体也没消化完,还需后面补足,大致为:确定适定性,分析收敛性,写出迭代格式,计算收敛阶。

这也是数值分析的最后一章,我们依次介绍了误差分析的方法、线性方程组的数值解法函数插值的预测法数值积分的近似计算法和本章非线性方程的数值解法,这些方法我们以后未必能用得到,但通过对这些方法学习,我们如果能体会这种逼近和代替的思想也是很大的收获,现实世界的很多问题我们没法精确求解分析,构造相近的情景再解决也算是曲线救国了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值