缩点学习笔记

第一次写算法,不知道有没有讲明白,干脆多写点吧。

前言

本篇题解写得很详细啰嗦,适合初学者,dalao 请跳过。

其实缩点并不能算算法,只是个小技巧。

思路

例题:P3387 【模板】缩点

我们通过一道题目引入缩点。

题意很好理解,怎么求呢?对于图上的算法,我们知道可以按照拓扑序进行 DP。怎么 DP 呢?这个很简单,设 d p i dp_{i} dpi 为以点 i i i 为终点的路径中权值和的最大值。只需要把所有指向点 i i i 的点 j j j d p j dp_{j} dpj 取 max 再加上 a i a_{i} ai 就是 d p i dp_{i} dpi

有问题吗?当然有。原图中可能存在环,没有拓扑序。这时候就要用到缩点的小技巧:把每个极大强联通分量看作一个点,建立新图。在某些题(例如该题目)中,由于强联通分量点之间互相可达的性质,整个强联通分量是可以被看做一个点的。例如在该题目中,由于强联通分量中的点互相可达,那么只要到达强联通分量中的其中一个点,就一定可以到达强联通分量中的其它点。于是我们可以把每个极大强联通分量看作一个点,这样一来,形成的新图一定是有向无环图(DAG),也会存在拓扑序,DP 求解即可。为什么一定是有向无环图呢?反证:如果有环的话,那么环上的点一定可以构成强联通分量,与已知矛盾,证毕。

代码

例题:P3387 【模板】缩点的代码。

#include<bits/stdc++.h>
using namespace std;
const int N=1e4+5,M=1e5+5;
int n,m,a[N],dfn[N],cntdfn;
int nxt[M],to[M],tp[N],cntbian;
stack<int> q;
int bj[N];
int low[N],cntq,sum[N];
vector<int> b[N];
//为了区分,原图用链式前向星存,新图用邻接表存
void dfs(int x)//求强联通分量缩点
{
	q.push(x);
	dfn[x]=++cntdfn;
	low[x]=dfn[x];
	for(int i=tp[x];i;i=nxt[i])
	{
		if(!dfn[to[i]])
		{
			dfs(to[i]);
			low[x]=min(low[x],low[to[i]]);
		}
		else if(!bj[to[i]]) low[x]=min(low[x],dfn[to[i]]);
	}
	if(low[x]==dfn[x])
	{
		cntq++;
		while(!q.empty()){
			int t=q.top();
			q.pop();
			bj[t]=cntq;
			sum[cntq]+=a[t];
			if(t==x) break;
		}
	}
}
int r[N],res[N];
int main(){
	ios::sync_with_stdio(0);
	cin.tie(0),cout.tie(0);
	cin>>n>>m;
	for(int i=1;i<=n;i++)
		cin>>a[i];
	while(m--)
	{
		int u,v;
		cin>>u>>v;
		to[++cntbian]=v,nxt[cntbian]=tp[u],tp[u]=cntbian;
	}
	for(int i=1;i<=n;i++)//图可能不连通!
	if(!dfn[i]) dfs(i);
	for(int i=1;i<=n;i++)//缩点后建新图
		for(int j=tp[i];j;j=nxt[j])
			if(bj[i]!=bj[to[j]])
			b[bj[i]].push_back(bj[to[j]]),r[bj[to[j]]]++;
	queue<int> q;
	int ans=0;
	for(int i=1;i<=cntq;i++)
		if(!r[i]) q.push(i),res[i]=sum[i];
	while(!q.empty()){//按照拓扑序求解
		int t=q.front();
		q.pop();
		ans=max(ans,res[t]);
		for(int i=0;i<b[t].size();i++)
		{
			r[b[t][i]]--;
			res[b[t][i]]=max(res[b[t][i]],res[t]+sum[b[t][i]]);
			if(!r[b[t][i]]) 
				q.push(b[t][i]);
		}
	}
	cout<<ans;
	return 0;
}

总结

缩点就是依照强联通块的性质,将每一个强联通块都看作一个点,从而将原图转换为有向无环图(DAG),再进行求解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值