- 博客(23)
- 收藏
- 关注
原创 电脑小问题解决
2、打开组策略之后,依次点开,计算机配置,管理模板,所有设置,在右侧找到 允许Windows应用访问相机。3、双击进入之后,依次选择已启用和所有应用的默认设置 由用户控制,然后选择确定,最后退出。1、按下WIN+R调出运行,然后输入 gpedit.msc 回车;在组策略中设置 允许Windows应用访问相机。首选需要解决Win10家庭版打开组策略问题,
2023-10-27 17:51:33 1678 1
原创 本地配置深度学习环境 ---windows+anaconda+cuda+cudnn+pytorch+python+pycharm
配置本地深度学习环境
2023-03-31 16:37:13 669
原创 图像复原 ---SUNet
在本文中我们提出了一种称为SUNet的恢复模型,它使用Swin Transformer层作为我们的基本块,然后应用于UNet架构以进行图像去噪
2023-03-16 09:10:03 2699
原创 图像复原 ---SwinIR
在本文中,我们提出了一个强大的基线模型SwinIR,用于基于Swin Transformer的图像恢复。SwinIR由三部分组成:浅层特征提取、深层特征提取和高梓良图像重建。特别地,深度特征提取模块由几个残差Swin Transformer块(RSTB)组成,每个有几个Swin Transformer层和一个剩余连接。我们对三个代表性任务进行了实验:图像超分辨率(包括经典、轻量级和真实世界图像超分辨像超分辨率)、图像去噪(包括灰度和彩色图像去噪)和JPEG压缩伪影减少。
2023-03-15 21:16:55 761
原创 图像复原 --- Restormer
我们提出一个restormer网络,包含MDTA和GDFN模块,其中MDTA模块通过跨通道而不是空间维度应用自注意力来隐式建模全局上下文,因此具有线性复杂度而不是二次复杂度。 此外,所提出的门控 Dconv 前馈网络 (GDFN) 引入了一种门控机制来执行受控的特征转换。 为了将 CNN 的优势整合到 Transformer 模型中,MDTA 和 GDFN 模块都包含用于编码空间局部上下文的深度卷积。
2023-03-11 19:15:12 1284
原创 医学图像去噪 -----Eformer
本文提出了一种基于残差学习的医学图像去噪模型。 我们利用Transformer和边缘增强模块来产生高质量的去噪图像,并使用多尺度感知损失和传统的MSE损失相结合的方法来实现最先进的性能。
2023-03-09 23:57:30 2068 3
原创 医学图像去噪 -----EDCNN
本文提出了一种新的基于稠密连通卷积结构的去噪模型,即基于边缘增强的稠密连通网络(EDCNN)。 通过设计的基于可训练Sobel算子的边缘增强模块,该方法能够自适应地获取输入图像更丰富的边缘信息。 此外,我们还引入了复合损失函数,它是MSE损失和多尺度感知损失的加权融合。
2023-03-08 20:52:57 4127 2
原创 多版本python的管理
前言在安装过程中,可能安装了多个python版本,可能安装了anaconda导致有自带的python,同时本身电脑也安装了官方下载的python也茫然不知。导致可能有以下情况发生:1.pip install 安装模块包不知道安装到哪一块2.jupyter使用时不知道用的是哪个python3.下载的pycharm运行代码时总是说找不到模块包python的安装以及环境搭建window下直接安装1.安装python需要到官网下载安装包安装的过程不需要多说,记得两个版本的py分别安装在不同文件夹下
2022-04-21 23:35:18 3854
pytorch实战2,数据集实例化有问题
2023-04-10
TA创建的收藏夹 TA关注的收藏夹
TA关注的人