遇到R is taking longer to start than usual

1.原因

R服务器可以多端使用,打开时间长是因为内存占用过大。

2.解决

在linux上找到自己id下的rsession进程,然后kill掉它。这一步就相当于关掉了R服务器上正在运行的程序。只是自己这一端的,不会影响其他用户使用。

ps -u userid
kill 进程的id

登录成功,但原先运行的程序就没有了。

3.最后

如果是因为某个程序运行过久引起的,等久一点,第二天跑完了自然可以很轻松地登录R。

### 设置严格依赖约束 为了减少 `pip` 的依赖解析时间和提高效率,可以采用更为严格的依赖约束策略。通过创建并维护一个精确的约束文件(constraints file),能够显著提升安装过程的速度。 当使用约束文件时,只需指定版本号而不触发不必要的更新或重新计算依赖关系树[^4]。这不仅加快了环境构建速度,还确保了生产环境中使用的库版本保持一致性和稳定性。 对于 Python 项目而言,在项目的根目录下建立名为 `constraints.txt` 文件是一个常见做法。在此文件中按照如下格式定义所需的包及其具体版本: ```text package_name==version_number ``` 例如: ```text numpy==1.21.0 pandas==1.3.0 scikit_learn==0.24.2 ``` 之后可以在命令行中利用 `-c` 参数来应用这些约束条件执行安装操作: ```bash pip install -r requirements.txt -c constraints.txt ``` 这种方式使得即使是在大型复杂的应用场景里也能有效控制软件供应链风险的同时极大缩短部署周期。 ### 报告 pip 性能问题 如果遇到 `pip` 安装过程中存在明显的性能瓶颈或者异常缓慢的情况,则可以通过多种途径向开发者社区反馈此类问题以便得到及时解决和支持。 一种方法是访问 GitHub 上官方仓库页面提交 Issue 报告。在此之前建议先查阅已有的 Issues 列表确认是否有相同的问题已经被记录下来;如果有相似案例则可以直接参与讨论贡献解决方案而不是重复开新议题。 另外还可以考虑加入 Pypa Discourse 论坛与其他用户交流经验分享见解共同探讨优化方案。同时也可以关注 PyPA 组织下的各类社交平台账号获取最新的动态和技术资讯。 最后值得注意的是收集详细的日志信息有助于更好地定位分析潜在原因所在。可以通过增加 verbosity level 来获得更多关于当前会话状态变化的日志条目从而辅助排查工作: ```bash pip install --verbose package_name ``` 上述措施可以帮助有效地管理和改善基于 Pip 工具链上的开发体验质量。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值