亚马逊云科技-智能家居GenAI大模型落地

亚马逊云科技-405GenAI生成式AI

关键字: [symposium, AI Field Lab, 市场营销, 文案写作, 品牌调性, 微调大模型, 转化率提升]

本文字数: 1300, 阅读完需: 6 分钟

导读

刘俊义是来自亚马逊云科技的应用科学家,他在演讲中分享了三个实际企业中使用大模型的案例:市场营销、云端融合和工业生产。他介绍了如何利用大模型微调技术提高电商产品文案写作的转化率,以及通过蒸馏架构解决扫地机器人避障问题的新方法。此外,他还展示了如何结合大模型和其他模型来解决工业爆炸图识别的难题。最后,他介绍了亚马逊云科技的AI Field Lab团队,该团队致力于探索前沿模型并协助客户构建生成式AI应用。

演讲精华

以下是小编为您整理的本次演讲的精华,共1000字,阅读时间大约是5分钟。

在市场营销场景中,刘俊义阐述了传统的Listing写作流程存在诸多痛点。首先,流程非常长,需要多个环节的参与。其次,写作过程存在很大的主观性,质量与写作人员的能力息息相关。此外,一旦产品上架后,想要迭代优化Listing文案是一件很困难的事情。

有了生成式AI大模型后,卖家可以直接让模型生成Listing文案。但这种最简单的方式也存在两个问题:一是模型生成的文案不一定符合预期,因为每个平台和品牌都有自己的风格和调性,通用大模型难以把握;二是这种方式无法很好地进行迭代,比如无法有效地约束模型不包含某些禁止的词语。

为解决这些问题,亚马逊云科技开发了基于微调的自动化方案。具体做法是通过持续预训练(P-Continue Pretrain)和监督微调(Supervised Fine Tune)的方式,将品牌语料注入大模型,使其获得品牌调性和遵从能力。这个任务只需要经过持续预训练,将历史数据和品牌自己的数据(大约在万条级别,包括历史投放的Listing和竞对产品数据)注入模型即可完成微调。

经过微调后,该模型在实际电商平台上的表现令人振奋。在60%到70%的情况下,模型生成的Listing文案质量都会比人工写作的高。不仅如此,该方案还能带来约5%的转化率提升。此外,通过对线上反馈数据的强化学习(DPO学习),模型能进一步优化对齐人的评价指标,提高性能。

云端融合场景中,扫地机器人的核心竞争力之一是识别障碍物的种类数量。有些优秀的产品能够识别100多种、200多种障碍物,而主流产品的识别种类数量级通常在几十种左右。传统方法是使用YOLOv5目标检测模型,结合路线规划能力实现避障。但这需要为每种障碍物人工标注至少1000张图片,成本和时间都很高。一旦有新的障碍物需要识别,就必须重新标注和训练模型,反馈周期长达两周甚至更长。

为解决这一痛点,亚马逊云科技采用了蒸馏架构,将大模型的能力蒸馏到小模型上,实现自动化标注,取代人工标注环节。通过这种方式,对于新增的障碍物(如宠物玩具),只需人工标注30个样本,就能达到90%的精度和召回率。30个样本的标注成本对一个人来说可能只需两个小时,因此一旦收到新的障碍物识别需求,他们一天之后就能在亚马逊云上提供系统性解决方案,反馈周期大幅缩短。

此外,该架构的标注成本非常低,省去了原先数千万张图片的标注成本。最后,这种开放式模型通过语义对齐的方式实现增量学习,无需重新训练已有能力,具有良好的可迭代性。整个流程可在亚马逊云上自动化运行,不需要算法工程师参与。

在工业生产场景中,刘俊义介绍了一个名为”爆炸图识别”的案例。爆炸图是工业生产中的一种平面图,上面使用序号而非文字标注零部件,每个序号对应一个零部件。为生成维修手册,需要将这些序号识别并与零部件名称对应,但传统OCR方法在这一任务上的精度很低,很难达到50%以上。

这是因为爆炸图的格式不规范,序号可能是”1.2”这种形式,也可能是”1”到”n”。圆框有时是方框,有时没有框,线条也没有统一格式。而且爆炸图内容至少是演示图像的10倍,规模很大。一些字体还存在模糊的情况,人眼难以识别。

直接将爆炸图输入给大模型是无法解决的,因为大模型无法进行分割检测。为此,亚马逊云科技提出了一套创新方案:首先使用Meta开源的Segment Anything模型对图像进行分割检测,得到每个序号的子图;然后将这些子图拼接成表格形式的结构化数据;最后将结构化数据输入给开源的大模型GLM for V进行识别,该模型在OCR任务上表现出色。该方法的精度可达90%,与传统OCR的50%左右水平相比,是一个显著的提升。

总的来说,通过专业化小模型的辅助,大模型可以很好地解决一些单独无法完成的任务。在这些案例中,亚马逊云科技巧妙地将大模型与其他模型相结合,充分发挥了生成式AI的强大能力,为企业带来了实实在在的价值。这些解决方案均可在亚马逊云上实现自动化运行,无需算法工程师参与,大大降低了企业的使用门槛。

总结

亚马逊云科技正在积极探索生成式AI在企业应用中的实践。本次演讲分享了三个案例,展示了生成式AI如何助力市场营销、工业生产和云端融合等领域。

在市场营销方面,通过微调大模型,可以生成符合品牌调性的产品描述,提升转化率。在工业生产中,利用大模型蒸馏技术,可以大幅降低障碍物识别模型的标注成本和迭代周期。而在爆炸图识别任务中,结合大模型和目标检测模型,可以高效准确地识别零部件序号,解决了传统OCR方法的问题。

亚马逊云科技的AI Field Lab团队致力于探索生成式AI的前沿技术,并与客户合作,共同构建生成式AI应用。演讲呼吁企业把握生成式AI的机遇,与亚马逊云科技携手推动创新。

亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。亚马逊云科技致力于成为企业构建和应用生成式AI的首选,通过生成式AI技术栈,提供用于模型训练和推理的基础设施服务、构建生成式AI应用的大模型等工具、以及开箱即用的生成式AI应用。深耕本地、链接全球 -- 在中国,亚马逊云科技通过安全、稳定、可信赖的云服务,助力中国企业加速数字化转型和创新,并深度参与全球化市场。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值