利用大规模数据工程和机器学习改善患者护理
关键字: [Amazon Web Services re:Invent 2024, 亚马逊云科技, 生成式AI, Amazon Bedrock, Data Engineering, Machine Learning, Patient Care, Unstructured Data, Medical Text]
导读
由于超过80%的医疗保健数据是非结构化的,将传统机器学习(ML)方法应用于医疗保健数据面临着重大挑战。在这个简短演讲中,了解如何实施Amazon Bedrock、Amazon Textract和其他亚马逊云科技原生服务,以高效处理非结构化医疗文档数据,并训练ML模型以辅助临床决策。探索如何构建一个解决方案,该方案结合了大规模数据工程、由大型语言模型驱动的文档提取和理解,以及ML训练,以处理文档、生成由临床专家指导的结构化数据模型,并评估ML模型性能。
演讲精华
以下是小编为您整理的本次演讲的精华。
在医疗保健领域,人工智能和机器学习(AI/ML)的整合面临着重大挑战。问题的关键在于大量非结构化数据被困在自由格式的医疗文本中,例如病程记录、就诊摘要和医疗记录。这些数据以每天TB级的规模呈指数增长,蕴含着丰富的患者信息,但除非转换并提取为与电子健康记录(EHR)系统兼容的结构化数据格式,否则无法访问。然而,提取这些宝贵信息的过程既耗时又费力,这对于缺乏必要人员和专业知识来专注于此项工作的较小医疗机构和医院来说是一个巨大障碍。
三个常见的医疗保健使用案例凸显了高效数据提取和分析的迫切需求:患者护理协调、患者在医疗机构之间转移以及与政府部门进行人群医疗保健分析。在患者护理协调方面,器官移植和癌症治疗规划等情况需要从多模态和上下文数据源中提取关键信息。同样,当将患者从一家医疗机构转移到另一家时,必须无缝集成分散在不同EHR系统中的数据,而手动数据提取的耗时性可能会阻碍这一过程。然而,最棘手的挑战在于政府部门进行的人群医疗保健分析,其涉及数以万计甚至数十万计患者的大规模数据,需要一种强大且高效的解决方案来解锁非结构化数据中蕴含的见解。
传统上,分析医疗保健数据遵循三步走的方法。首先,通过EHR系统收集各种格式(如传真和电子邮件)的文档图像。其次,医疗专家手动精心整理数据,提取决策所需的关键信息。最后,咨询人类专家,根据提取的信息决定是接受、转移还是拒绝患者。
虽然传统的AI/ML方法曾被用于试图简化这一过程,但它们在几个关键领域存在不足。首先,常用于从文档图像中提取文本的光学字符识别(OCR)技术无法捕获表格、表单和图像等复杂数据,导致宝贵信息无法利用。因此,医疗专家通常不得不采用手动提取方法,从而抵消了AI/ML解决方案所带来的潜在效率提升。
其次,依赖于关键词计数和存在检测的词袋技术缺乏做出明智决策所需的上下文意识和关系理解能力。例如,对于有脑震荡史的患者,医疗报告中仅出现“头痛”一词可能无法准确传达病情严重程度,除非考虑患者的病史和上下文含义。
最后,使用不具备上下文意识的较简单ML算法进一步加剧了传统AI/ML方法的局限性,因为它们无法捕捉医疗专家通过多年训练和经验所获得的细微理解。
为了解决这些不足,开发了一种利用自然语言理解(NLU)和transformer模型的解决方案模式。这种方法的第一步是使用Amazon Textract服务,它不仅能提取文本,还能识别手写体、扭曲文本、文档布局、表格结构和表单键值对,甚至可以处理追溯到1700年的历史文档。这种能力确保了宝贵信息不会因传统OCR技术的局限性而丢失。
第二步通过使用prompt engineering来模仿人类专家阅读和理解文档的方式。咨询临床专家,确定他们在分析特定用例的文档时会提出的具体问题,例如确定患者在过去六个月内住院次数或评估肝移植患者的MELD评分。然后,使用prompt engineering技术将这些问题转换为prompts,并让NLU代理根据文档内容提出并回答这些prompts。编译后的答案形成了最相关信息的简明摘要,有效提高了信噪比,从可能包含数百页笔记和记录的文档中提炼出关键见解。
在第三步中,汇总的信息直接输入transformer模型进行预测建模任务,利用transformer模型与大型语言模型(LLM)在架构上的相似性。这种方法避免了传统的特征工程,后者需要将文本数据转换为离散特征,如连续变量或分类变量。相反,输入文本保留了其上下文形式,允许transformer模型整体处理信息并基于完整上下文做出预测。这种方法在医疗保健领域的各种业务用例中都具有很高的可扩展性。
为进一步增强解决方案,利用SageMaker服务采用了迁移学习技术,该服务提供了在临床数据上预先训练的transformer模型。这种方法允许对模型进行微调和定制,以适应特定用例,而不是从头开始,从而加快了开发和部署过程。
该解决方案模式的实施利用了一系列亚马逊云科技服务来协调和并行化数据提取和处理工作流。Lambda函数用于在文档图像上启动Textract作业,输出存储在S3存储桶中。Step Functions中的Map/Map state功能支持并发处理数十万个任务,利用亚马逊云科技云的可扩展性加速数据提取过程。
一旦提取了文本,就可以使用Bedrock服务将其输入到基础模型中,Bedrock可以根据临床专家的输入自动完成基于prompts的问答过程。Bedrock生成的汇总输出存储在另一个S3存储桶中,SageMaker上的transformer模型可以从中启动,执行预测任务,例如确定是否应该转移患者。
虽然所介绍的解决方案模式解决了医疗数据分析中的许多挑战,但仍有几个潜在的改进领域。一个值得探索的方向是使用视觉语言模型,这是一种在图像和文本数据上同时训练的多模态LLM。这些模型有可能整体处理文档图像,在某些情况下可能优于传统OCR方法和Textract。目前正在积极研究视觉语言模型与现有技术的性能对比。
另一个改进领域涉及实施防护措施,以减轻LLM已知的虚构(hallucinations)风险。虽然当前解决方案依赖于人类主题专家评估来验证LLM输出,但Bedrock提供了自动防护功能,可执行上下文验证检查,以检测和防止LLM响应中的虚构。
最后,可以利用Amazon Trainium实例实现成本优化,据证明在训练transformer模型和LLM时可节省高达50%的成本。
总之,在亚马逊云科技 re:Invent 2024上的演讲重点介绍了大量非结构化医疗数据以及传统AI/ML方法在有效提取和分析这些信息方面的局限性所带来的重大挑战。所提出的结合NLU、transformer模型和亚马逊云科技服务的解决方案模式为自动化数据工程、模仿人类专家流程以及在各种医疗保健用例中实现预测建模提供了一种可扩展且高效的方法。虽然仍有进一步改进的空间,但这一解决方案代表了利用AI/ML的力量来改善患者护理并推动医疗保健行业创新的重大进步。
下面是一些演讲现场的精彩瞬间:
Joe Langrea,亚马逊云科技专业服务团队的一名成员,在reInvent2024活动上介绍了自己。
他强调了从大规模非结构化医疗文本数据中提取有价值的患者信息的挑战,这对于医疗保健AI/ML应用程序至关重要。
演讲者解释了他们如何使用提示工程将人类专家的问题转换为自然语言理解(NLU)代理的提示,以从文档中总结信息,模仿专家的思维过程。
演讲者强调了直接将总结后的文本数据输入到转换器模型中的能力,从而绕过了特征工程,使该方法在各种业务用例中具有高度可扩展性。
演讲者解释了如何使用SageMaker在临床数据上进行转移学习,使用预训练的转换器模型构建神经网络,用于各种医疗保健用例,如患者转移决策。
Amazon Step Functions的Map/Map状态允许并行化重复任务,如使用Amazon Textract处理医疗文档,从而实现了数十万个任务的高效并发处理。
总结
在不断演进的医疗保健领域,利用大规模数据工程和机器学习的力量已成为提高患者护理水平的关键举措。这个叙述深入探讨了人工智能与医疗保健交汇处的复杂挑战和创新解决方案。
首先,问题的核心在于大量非结构化的医疗数据被困在自由格式的文本中,例如病程记录和就诊总结。将这些数据提取并转换为结构化、可用的格式是一个耗时且劳动密集的过程,通常受到医疗机构缺乏专门专业知识的阻碍。
其次,三个关键的医疗保健应用场景凸显了解决这一挑战的紧迫性:复杂治疗(如器官移植和癌症)的患者护理协调、医疗机构之间无缝的患者转移,以及政府部门的大规模人口医疗分析。每一种情况都需要高效地提取和利用上下文患者数据。
第三,传统的人工智能/机器学习方法虽然有价值,但无法解决医疗数据的细微差别。光学字符识别(OCR)无法捕捉诸如表格和表单等复杂数据格式,而词袋技术缺乏上下文意识,无法满足复杂医疗场景的需求。
为了克服这些限制,演讲者介绍了一种利用自然语言理解(NLU)和转换器模型的解决方案模式。这种方法模仿人类专家的认知过程,将他们的问题转换为提示,使NLU代理能够从文档中提取相关信息。提取的摘要随后被输入转换器模型进行预测建模任务,从而无需进行手动特征工程。
总之,演讲者强调了进一步改进的潜力,例如整合视觉语言模型、实施防护措施以缓解虚构现象,以及通过Amazon Trainium等专用硬件优化成本。总的来说,通过发挥数据工程、NLU和机器学习的协同作用,我们可以开拓提高患者护理水平和推动医疗保健创新的新领域。
亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。做为全球生成式AI前行者,亚马逊云科技正在携手广泛的客户和合作伙伴,缔造可见的商业价值 – 汇集全球40余款大模型,亚马逊云科技为10万家全球企业提供AI及机器学习服务,守护3/4中国企业出海。