丰田通过生成式人工智能推动创新并提高运营效率

丰田通过生成式人工智能推动创新并提高运营效率

关键字: [Amazon Web Services re:Invent 2024, 亚马逊云科技, 生成式AI, GearPal, ]

导读

丰田正处于一场变革性的旅程中,利用生成式人工智能的力量推动创新、提高生产力并增强运营效率。在本次讨论中,您将深入了解丰田的生成式人工智能驱动的举措,这些经验可应用于您自己的人工智能转型。探索丰田如何运用人工智能来捕捉和传递即将退休员工的关键机构知识,减少生产线设备的平均修复时间,并降低电池报废率。此外,了解丰田利用生成式人工智能加速大型机现代化的创新方法,将迁移时间缩短多达50%,同时引入新的业务能力。

演讲精华

以下是小编为您整理的本次演讲的精华。

演讲一开始,Sandeep向观众提出一个问题,询问他们是否在车辆仪表板上遇到过一些神秘的符号,比如带感叹号的圆圈、蜿蜒的车道线或带字母“P”的三角形。他指出大约有10%到15%的观众举手表示遇到过这种情况。Sandeep随后强调,当他问有多少人确切知道这些符号的含义以及此时是否安全驾驶时,只有几个人举手。他设想了一种情况,即提供更详细的解释,包括是否安全驾驶、最近经销商位置,甚至可以预约,他表示这是汽车行业中可能的生成式AI应用案例之一。

Sandeep解释说,汽车行业通常需要花费数十亿美元、数年时间进行新产品开发,而这笔投资并不总是能获得回报。他说,福布斯等机构进行的研究表明,通过利用生成式AI在数据分析、模式识别、异常检测和生成合成数据方面的能力,可以在设计和开发阶段轻松缩短数周甚至数月的时间。

Sandeep阐述了汽车行业中可以应用生成式AI的四个领域。在产品设计和质量方面,生成式AI可以提出创新的设计和造型建议,同时评估其空气动力学性能。在车辆体验方面,Sandeep设想了一个实时对话助手,可以指导用户、回答问题、提供路线引导,甚至为陌生地区提供旅游推荐。此外,生成式AI可用于为服务技术人员提供指导性故障排除步骤,简化诊断和维修车辆的过程。在自动驾驶领域,Sandeep解释说,生成式AI可以利用真实数据集生成合成交易,通过引入边缘元素,然后用于评估和进一步改进模型。

Sandeep表示,亚马逊云科技为客户提供了解决方案,无论他们在生成式AI之旅的哪个阶段,从低级控制到高级业务问题解决。他提到亚马逊云科技通过Amazon Bedrock提供了一系列领先的基础模型的选择,所有模型都可通过单一API访问,并且某些模型如亚马逊的Titan模型和Anthropic模型可进行定制。Sandeep强调,Amazon Bedrock能够配置阈值以过滤有害内容、定义允许的主题,并禁止查询某些主题。他还讨论了检索增强生成(RAG)的用例,其中模型通过客户自己的数据源进行增强,而无需更改现有模型的权重。

Sandeep介绍了Amazon Q,它为企业用户、开发人员提供不同的个性化服务,并嵌入了Amazon Connect呼叫中心和Amazon供应链等产品中的专门功能。他提到Amazon Q的功能包括呼叫记录摘要、识别客户体验负面的呼叫以用于培训,以及运行供应链场景以识别异常并规划瓶颈。

Stephen Ellis讨论了丰田从一家汽车制造公司向一家移动出行公司的转型,这带来了独特的机遇和挑战。他解释说,一些被视为全球最佳实践的制造流程是在丰田开发的,这使他们在确立新范式方面拥有丰富的知识。然而,移动出行领域需要多模态软件,在快速原型设计和迭代新用例和制造流程方面面临挑战。

为了应对这些挑战,丰田成立了企业AI团队,旨在创建卓越中心并为实验制定标准。一个被确定的差距是在过渡期间,不同经验水平的团队成员之间的知识保留。丰田利用生成式AI开发了一个知识保留平台,以不同语言在团队成员和地区之间捕获和传播信息。

该过程包括记录主题专家、将他们的知识与文档进行比较、验证其时效性、创建书面报告,并在组织内部社交化。通过生成式AI,该过程使用检索增强生成(RAG)系统自动化。RAG系统摄取文档、与主题专家进行访谈、分析与文档的信息,并创建可供其他团队成员查询的数字镜像。集成了翻译和上下文感知的转录功能。该系统允许为不同受众创建多个问题管道,确保以适当的上下文和专业水平传递信息。

Cordell讨论了两个用例:Gear Pal和Battery Brain。Gear Pal旨在减少丰田肯塔基工厂生产线上机器故障的平均修复时间。它允许团队成员向聊天机器人查询机器故障原因和修复方法,将手册、零件库存和其他文档整合到可搜索的数据库中。Cordell表示,在构建动力总成涉及数百台机器和数千种零件。

Gear Pal的数据摄取过程由于不同语言、文档格式以及表格和图像等复杂结构而具有挑战性。最初,团队在没有语言翻译的情况下构建了摄取管道,导致高延迟。他们意识到部分延迟是因为他们按系列搜索每种语言。为解决此问题,他们将所有数据转换为英语,将所有内容标准化为通用语言进行摄取。然后在查询后执行翻译,从而减少延迟。

Cordell提到,他们制作了一个类似于ChatGPT的反馈系统,用户可根据三个标准给出正面或负面反馈:正确的响应、引用的正确文档,以及引用的正确页面或选项卡。这使他们能够建立一组黄金查询,以微调语言模型并确保响应准确。

Battery Brain类似于Gear Pal,但侧重于减少生产线上电池报废。它整合了来自可信网站的互联网搜索结果,以增强响应并补充最新的电池知识。Cordell解释说,在制造过程中涉及许多变量来生产优质零件,而在车辆制造中,由于化学过程和材料纯度评估,这一过程更加敏感。丰田正在北卡罗来纳州建立一家新的制造工厂,减少电池报废对于提高效率至关重要。

摄取Microsoft OneNote文档增加了复杂性,这些文档通常包含手写体、速记、缩略语、带或不带标题的图像,以及不同的记笔记风格。Cordell表示,能够构建一个数据不可知的摄取管道,从非结构化数据中推断信息,对于Gear Pal和Battery Brain都至关重要。

Paul讨论了大型机现代化项目,旨在将大型机代码转换为现代语言如Java。之前由非亚马逊云科技供应商的尝试由于在不影响车辆生产的情况下在大型机和云环境之间热交换代码的复杂性而失败,这可能会停止车辆生产并直接影响业务。

该项目的成功归功于亚马逊云科技、丰田内部团队以及人工智能协作。Amazon Q在理解COBOL代码并推导规则方面的能力发挥了关键作用。该过程包括将代码转换为文本进行分析、识别数据消费者、数据提供者、变量、表和实体。Paul强调,在丰田内部可能有超过5000种不同的缩略语,系统需要意识到这一点,例如在车辆生产环境中,“SSM”的含义与“社会安全号码”不同。

最初,系统的准确率约为80%,但通过与丰田车辆供应链团队的人工反馈循环,准确率提高到90%以上。他们的上下文理解和准确性评估有助于识别依赖关系和迁移岛,而不会影响生产。亚马逊云科技开发了一个用户界面,丰田可以在其中加载COBOL程序,它将生成数据流、实体、数据库和其他信息供验证。

Paul强调,虽然生成式AI擅长于需要几秒到几分钟的任务,但未来在于推理引擎,将形式逻辑应用于输入和输出,用于需要数小时的任务。他提到丰田在消费者和企业应用程序中投资AI,旨在与客户共同构建移动出行的未来。

总之,该演讲展示了丰田通过与亚马逊云科技和人工智能合作伙伴的密切合作,在车辆体验、维护和代码现代化等各个领域创新性地应用生成式AI。关键要点强调了提高效率的潜力、领域知识和人工反馈循环的重要性,以及朝着推理引擎和形式逻辑发展的未来方向。

下面是一些演讲现场的精彩瞬间:

演讲者询问观众是否在车辆仪表板上遇到过晦涩难懂的符号,并且是否理解它们的含义,强调了更好的车辆诊断系统的需求。

42fb8541657c6254f3619c311bc1feaa.png

公司的生成式AI服务Amazon Q现已集成到各种产品中,使用户能够运行场景、识别异常情况,并通过AI驱动的功能提高效率。

1b586436d307cde8b2507e625ad3da21.png

我们的企业AI团队通过建立标准、实现跨多个团队的快速迭代以及提供一个卓越中心来指导转型,从而了解AI功能和用例。

60b83ce6ca27a9dfbe5660746dd3a027.png

一个利用生成式AI创建信息数字镜像的系统,允许团队成员异步地在整个组织中提出问题并理解上下文。

45c51b6297ca0202ceb6de2693c64fa5.png

生成式AI可以服务于多种用例,通过适应用户专业水平和上下文的管道,实现为不同受众创建量身定制内容的能力。

9adcb836c55d18e676606b8e5652caa5.png

以问答格式构建数据,使其可被大型语言模型(LLM)使用,并为基于Transformer架构的多种AI模型的未来使用做好准备。

108c2b5352aa6a0dd7a2695e9d0f2cbb.png

Andy Jassy探讨了AI的未来,强调推理引擎和形式逻辑的潜力,可以解决当前生成式AI模型无法处理的复杂、长期运行的任务。

009e0234c6451c28ff45e3b7cd09ddbd.png

总结

在reInvent2024活动上的一场引人入胜的演讲中,丰田展示了其如何创新性地利用生成式人工智能来推动创新,并提高各个领域的运营效率。这个故事以一个贴近生活的场景开始,突出了人工智能提供详细解释汽车仪表板上晦涩符号的潜力,确保更安全的驾驶体验。

丰田的方法集中在利用生成式人工智能在数据分析、模式识别、异常检测和合成数据生成方面的能力,来简化产品设计、开发和质量保证流程。演讲探讨了人工智能在提升车内体验方面的作用,包括实时对话助手、为服务技术人员提供指导性故障排除,以及解决自动驾驶中的边缘案例。

此外,丰田的企业人工智能团队建立了一个卓越中心,以促进快速原型制作、迭代和知识在整个组织内的传播。一个值得注意的用例“知识保留”利用生成式人工智能通过访谈、文档分析和上下文感知的问题生成,来捕获和异步分发主题专家知识,弥合团队成员之间的知识差距。

丰田与亚马逊云科技的合作在其生成式人工智能之旅中发挥了关键作用,为各种用户角色和开发阶段提供了全面的工具和服务。从低级硬件控制到高级业务解决方案,亚马逊云科技使丰田能够安全高效地创新。

演讲最后呼吁观众与丰田一起拥抱移动出行的未来,在那里生成式人工智能将继续塑造和增强汽车行业,促进创新和运营卓越。

亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。做为全球生成式AI前行者,亚马逊云科技正在携手广泛的客户和合作伙伴,缔造可见的商业价值 – 汇集全球40余款大模型,亚马逊云科技为10万家全球企业提供AI及机器学习服务,守护3/4中国企业出海。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值