亚马逊云科技-管理MLGenAI实验
关键字: [yt, Amazon SageMaker Experiments, Machine Learning Experimentation, Manage Experiments, Analyze Experiments, Compare Experiments, Track Experiments]
本文字数: 400, 阅读完需: 2 分钟
导读
在一场亚马逊云科技活动上,演讲者介绍了”利用Amazon SageMaker Experiments管理机器学习实验”。演讲者阐述了如何借助Amazon SageMaker Experiments大规模创建、管理、分析、比较和追踪机器学习实验。具体而言,用户可以从诸如SageMaker训练作业、笔记本、IDE和管道等各种来源记录和追踪实验,并追踪参数、指标和工件(如数据集和模型)。该演讲重点介绍了Amazon SageMaker Experiments如何实现追踪和分析实验、跨运行比较模型性能、可视化指标(如损失和准确度)以及管理超参数调优实验。
演讲精华
以下是小编为您整理的本次演讲的精华,共100字,阅读时间大约是0分钟。
在这个视频中,Prana Murphy作为亚马逊云科技的AI/ML解决方案架构师,向观众介绍了如何使用Amazon SageMaker Experiments来创建、管理、分析、比较和跟踪大规模的机器学习实验。她阐释了机器学习实验的重要性,它是一个尝试不同方法来解决机器学习问题的过程,涉及测试不同的算法、超参数和数据集,以找到最佳组合。这是一个迭代过程,需要跟踪每个实验及其结果。
Amazon SageMaker Experiments是Amazon SageMaker的一项功能,可以轻松地创建、管理、分析和比较大规模的机器学习实验。它现已成为SageMaker SDK的核心部分,无需安装额外软件包即可记录和跟踪实验。SageMaker Experiments允许用户从任何地方记录和跟踪实验,包括SageMaker训练作业、笔记本电脑、IDE、Studio笔记本电脑、SageMaker Autopilot和SageMaker Pipelines。使用Experiments,用户可以跟踪谁记录了实验以及何时记录的,用于训练模型的超参数是什么,这有助于可重复性。用户可以在单个视图中对不同实验进行定性分析,选择最佳模型,将其集成到SageMaker Model Registry中执行下游操作,或将模型部署到推理端点运行推理。
Prana演示了如何使用SageMaker Experiments来记录和跟踪当前的机器学习实验。她定义了实验名称”Pythor Subartan Experiment”、创建运行”local pythos run”、记录训练样本数和测试样本数等参数,以及记录训练和测试图像及文件。run.log_file会创建图像和标签的键值对,并将数据上传到S3路径,并将其关联到SageMaker实验运行中。在SageMaker Studio中,用户可以在”Experiments”部分查看实验和运行的详细信息,包括输入工件、参数等。
接下来,Prana演示了如何在模型训练过程中记录性能指标。她定义了一个log_performance函数,使用run.log_metric来记录指标名称、值和epoch步骤。她使用了一个简单的CNN骨干网络,并在模型训练函数中调用log_performance函数来记录损失和准确性等指标。她还展示了如何使用load_run和run装饰器在训练函数中定义运行,以及如何记录其他参数,如训练设备、优化器类型、epochs和隐藏通道数。最后,她演示了如何记录混淆矩阵、最终精确度97.68%、召回率和F1分数97.68%。
在SageMaker Studio中,用户可以查看实验的指标表和图表视图,包括混淆矩阵和训练损失图。Prana展示了如何在单个表格视图中查看不同指标的最小值、最大值和统计数据,如测试损失最小值0.7、最大值0.14,最终F1分数最小值97.68%、最大值97.68%,精确度最小值和最大值未提及,召回率最小值和最大值未提及,准确性最小值95.47%、最大值97.7%。她还演示了如何可视化这些指标,使用条形图查看最终F1分数,使用线图查看训练损失的变化趋势。
接下来,Prana演示了如何执行基本的超参数搜索。她定义了不同的超参数组合,包括隐藏通道数、优化器(Adam和随机梯度下降)和学习率(1e-3和1e-4)。她循环遍历这些组合,并将运行记录到实验中。在SageMaker Studio中,她展示了如何选择多个运行进行分析,包括查看表格视图和条形图视图,以快速确定最佳和最差的模型性能。在表格视图中,用户可以快速查看每个运行的最终F1分数,并确定最佳表现(98%F1分数)和最差表现(16%F1分数)的模型。在条形图视图中,用户可以直观地比较不同运行的最终F1分数,并快速确定最佳模型(98.63%F1分数)的超参数组合。她还演示了如何使用线图查看不同运行的训练损失变化趋势。
最后,Prana解释了如何在启动SageMaker训练作业时记录实验。用户需要使用run装饰器定义一个新的运行名称”train job”,提供超参数,然后调用fit。训练作业将在ml.p2.xlarge实例上运行。训练作业的指标和日志将记录在SageMaker Experiments中,用户可以像之前一样生成图表和查看指标。SageMaker Experiments还与Clarify集成,允许用户使用Clarify作业生成偏差报告,并通过获取模型可解释性指标来全面了解模型的学习和性能情况。
总之,这个视频全面介绍了如何使用Amazon SageMaker Experiments来管理和跟踪大规模的机器学习实验,包括记录参数、指标、超参数搜索结果等,以及可视化和比较不同实验的性能。SageMaker Experiments提供了一种简单而强大的方式来提高机器学习实验的可重复性和效率,并与其他亚马逊云科技服务如Clarify集成,为用户提供更全面的模型分析和解释能力。
总结
在不断发展的机器学习领域中,Amazon SageMaker Experiments作为一种强大的工具,能够帮助数据科学家和机器学习从业者大规模管理和优化实验过程。这种全面的功能允许用户无缝创建、跟踪、分析和比较实验,从而促进可重复性和效率。
首先,SageMaker Experiments通过引入两个核心组件(EXPERIMENT和RUN)简化了实验的记录和跟踪。一个EXPERIMENT作为多个RUN的集合,每个RUN代表模型训练的一个独特迭代,具有自己的输入、参数、配置和结果。这种结构化的方法使用户能够轻松组织和浏览他们的实验工作。
其次,SageMaker Experiments提供了一个集中的平台,用于定量分析和模型选择。用户可以可视化和比较多个RUN之间的指标,从而根据准确性、精确度、召回率和F1分数等标准识别出表现良好的模型。这种简化的过程使数据科学家能够做出明智的决策,选择有前景的模型进行部署或进一步完善。
最后,SageMaker Experiments与其他亚马逊云科技服务(如SageMaker Training Jobs和Clarify)无缝集成,提供了一个综合解决方案,用于模型训练、偏差检测和可解释性。这种集成确保用户能够全面了解模型的性能,从而解决潜在的偏差,并深入了解模型的决策过程。
总之,Amazon SageMaker Experiments彻底改变了机器学习实验的管理方式,促进了协作、可重复性和效率。通过提供一个集中的平台来跟踪、分析和比较实验,SageMaker Experiments使数据科学家能够充分发挥机器学习模型的潜力,推动创新并提供有影响力的解决方案。
亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。亚马逊云科技致力于成为企业构建和应用生成式AI的首选,通过生成式AI技术栈,提供用于模型训练和推理的基础设施服务、构建生成式AI应用的大模型等工具、以及开箱即用的生成式AI应用。深耕本地、链接全球 – 在中国,亚马逊云科技通过安全、稳定、可信赖的云服务,助力中国企业加速数字化转型和创新,并深度参与全球化市场。