亚马逊云科技-利用机器学习释放个性化GenAI潜力

亚马逊云科技-解锁机器学习个性化GenAI潜力

关键字: [yt, Amazon Personalized, Machine Learning Personalization, Amazon Personalized Service, Personalized Recommendations Use Cases, Customer Engagement Improvement, Real-Time Recommendations]

本文字数: 400, 阅读完需: 2 分钟

导读

在此演讲中,演讲者们探讨了Amazon Personalize如何助力组织利用机器学习实现个性化推荐和体验。他们阐释了Amazon Personalize如何采用专有的ML算法,根据个人用户的偏好和行为,生成高质量的实时个性化推荐。该演讲重点介绍了Amazon Personalize如何帮助企业快速部署可扩展的个性化解决方案,提高客户参与度和转化率,并在零售、媒体、旅游等各个行业推动业务增长。

演讲精华

以下是小编为您整理的本次演讲的精华,共100字,阅读时间大约是0分钟。

在当今数字时代,个性化体验已成为消费者对企业的标准期望。根据麦肯锡的研究,71%的消费者认为个性化是他们与企业互动时的基本服务水平。实施个性化不仅能提升客户体验,更能为企业带来实实在在的收益,包括10%至25%的收入增长,以及60%的客户重复购买率提高。个性化已不再是一个”可有可无”的功能,而是企业增长的关键引擎。

个性化可以渗透到客户旅程的方方面面,从网站或应用程序中突出显示的类别,到推广给特定用户的标题,再到内容推荐列表中展示的项目,乃至特定标题的艺术作品,都可以根据用户的偏好进行个性化定制。通过个性化,企业能够在拥挤的数字环境中吸引受众、培养品牌忠诚度,提高产品和内容的参与度以及网站或应用程序的总体使用时长。个性化还能提高营销效率,优化关键业务指标如点击率、内容浏览量、电子邮件开启率等,同时增加转化率和客户终身价值,因为客户更有可能消费量身定制的内容或产品。对于拥有大型产品目录的企业而言,个性化还能提高发现能力,帮助用户快速轻松发现感兴趣的内容或产品。

然而,构建高质量的个性化技术并非易事。企业在评估自主开发与购买现成解决方案时,通常会考虑四个关键因素:相关成本与服务质量、上市时间、所需资源以及可应用的定制化程度。大多数企业起步时会采用基于规则的个性化系统,但这种系统在用户和产品数量增加时难以维护,效果也并不理想。

相比之下,基于机器学习的个性化系统能够根据用户的行为和偏好为每个人提供独一无二的体验。但是,开发和推出一个健壮的内部个性化解决方案需要大量时间,增加了企业看到投资回报的等待时间。企业往往也会低估了训练、交付和维护复杂个性化系统和策略所需的人才和数据工程技能。此外,个性化领域没有一刀切的主算法或解决方案,需要根据独特的客户挑战和用例进行调整。

亚马逊个性化服务(Amazon Personalized)正是为解决这些挑战而诞生的。亚马逊在过去20多年中积累了丰富的个性化经验,认识到不同的个性化策略适用于不同的用例。亚马逊个性化服务使用专利机器学习算法,基于客户的数据和系统,为其部署有价值的、能够实时响应客户需求、偏好和行为变化的推荐解决方案。

通过机器学习技术,亚马逊个性化服务能够解决复杂的问题,而不是用一个推荐系统解决所有问题。它旨在创建高质量的推荐,为新用户、新产品和无历史数据的情况提供高达50%更好的推荐。该服务可应用于零售、媒体娱乐、旅游、金融、游戏、医疗保健等各个行业,为客户提供独特的一对一个性化体验。

亚马逊个性化服务支持三种基础用例:用户个性化、相关项目推荐和个性化排名。用户个性化推荐根据用户的个人资料、习惯和历史数据为其提供量身定制的产品或内容推荐,提高他们的参与度和满意度。相关项目推荐则基于用户与项目的实时互动行为,推荐相似的项目,帮助用户发现新产品或比较现有项目。个性化排名允许企业根据业务优先级重新排列产品目录,突出特定内容或产品,如热门电视剧、时事新闻、季节性商品或限时促销活动。

这些核心用例让企业能够管理业务中的大部分个性化需求。在媒体、零售和体育等领域,许多公司都在利用亚马逊个性化服务提供的广泛而深入的用例。

华纳兄弟探索公司是一家领先的全球媒体和娱乐公司,希望在云端构建一个新的推广引擎,为其数字资产上的未认证用户定制电影和节目推荐。通过亚马逊个性化服务,他们仅用两天时间就建立并训练了一个实时推荐引擎的概念验证。对于接收个性化推广的用户,他们的总体参与度提高了14%,跨品牌参与度提高了12%,而这些数据是与一个随机对照组进行比较的结果。他们还观察到,使用个性化推广与简单推广与热门内容相比,响应率提高了2至3倍。亚马逊个性化服务对于更有效地向粉丝展示他们想看的内容,跨华纳兄弟探索公司旗下各品牌发挥了关键作用。

其次,StockX是一家总部位于底特律的初创公司,通过独特的竞价交易模式革新了电子商务,将像运动鞋和街头服饰这样的商品视为高价值可交易商品,提供透明的市场体验。在早期的高速增长阶段,StockX的一小群机器学习工程师在其主页上添加了一个”为您推荐”产品行,这最终成为了客户参与度最高的主页行,参与度提高了50%。

最后,德国足球联赛(Bundesliga)利用亚马逊个性化服务为球迷创造个性化、区域化和个性化的体验。他们使用亚马逊个性化服务在其官方应用程序中为用户生成个性化内容。因此,他们的每位用户阅读文章的次数增加了67%,应用程序使用时长提高了17%。它已成为他们为球迷提供正确内容的关键途径。

接下来,介绍了亚马逊个性化服务的关键特性和优势。首先是领域优化推荐,亚马逊个性化服务提供了针对在线零售应用和媒体娱乐行业的预构建推荐器,可快速轻松地交付优化的个性化推荐,满足常见用例需求。其次是智能用户细分,利用亚马逊开发和完善的机器学习技术,能够自动识别对特定类型、类别或项目感兴趣的用户,无需开发和维护大量规则,从而构建更有效的用户细分。最后是促销内容动态排名过滤器,允许企业根据业务目标明确促销特定项目,同时确保最高的相关性,为推荐提供更多控制权。

亚马逊个性化服务是一项全面管理的服务,不仅包括核心的机器学习建模过程,还允许您根据过去的互动和项目信息对推荐进行调整,并优化任何重要的业务指标。它提供了实时或批量数据的灵活性,自动管理模型生命周期的许多复杂步骤,减少部署成本和时间,并可无缝集成到您的技术栈和业务流程中。作为一项云服务,它继承了亚马逊云科技最全面的安全和合规性控制,所有数据都经过加密,模型是私有和定制的,不会在客户或与亚马逊零售之间共享数据。

亚马逊个性化服务为众多客户带来了显著成功。福克斯公司(Fox Corporation)利用该服务推荐视频、文章和相关营销信息,根据用户或内容趋势为其所有资产提供个性化体验,从而实现了每位推荐的平均观看时长提高6%,跳出率降低15%。沙迦第(Chagardi)是一家沙特阿拉伯的初创公司,通过在应用程序主页添加”为您推荐”部分,将新用户转化为买家的比例提高了30%,每月订单总数增加了20%。旅行凯(Traveloka)则在其移动应用程序主页上使用亚马逊个性化服务推荐体验,与自有解决方案和第三方模型相比,点击率分别提高了66%和13%。

最后,演讲者概述了开始使用亚马逊个性化服务的后续步骤,包括访问产品页面、尝试免费层、参加”PhD in a Box”工作坊、参加Amazon Web Services re:re:Invent等。亚马逊个性化服务旨在加速企业增长,通过提供个性化体验提高客户参与度、留存率和转化率,帮助企业在数天而非数月内实现高质量的个性化推荐系统。

总的来说,这场网络研讨会全面介绍了亚马逊个性化服务如何通过机器学习技术解锁个性化体验的巨大潜力,帮助企业提高业务绩效、吸引并留住客户。个性化已不再是一个可选项,而是当今数字时代的必需品,亚马逊个性化服务正在助力企业抓住这一机遇。

总结

亚马逊个性化服务(Amazon Personalize)是一项全面托管的机器学习服务,赋予组织利用个性化技术为客户提供量身定制的体验。本次网络研讨会深入探讨了个性化的重要性、对业务的影响,以及亚马逊个性化服务如何解决构建强大个性化系统的挑战。

个性化已不再是一种”可有可无”的附加功能,而是成为了71%消费者的期望。实施个性化的组织实现了10-15%的收入增长,对于纯数字化运营的公司,个性化甚至可以带来高达25%的收入增长。个性化吸引了客户、提高了参与度并培养了品牌忠诚度。

亚马逊个性化服务凭借亚马逊20年的个性化专业知识,能够根据个人偏好和行为创建高质量的实时推荐。它简化了推荐系统的创建和维护,提供针对各种领域优化的预构建推荐器、智能用户细分以及能够推广符合业务目标的特定内容的功能。

来自华纳兄弟探索公司(Warner Bros. Discovery)、StockX、德国职业足球联赛(Bundesliga)、福克斯公司(Fox Corporation)、Chagardi和Traveloka等公司的客户成功案例证明了亚马逊个性化服务带来的影响,包括提高了参与度、转化率和收入。凭借其易用性、可扩展性和经济实惠性,亚马逊个性化服务使组织能够快速实施个性化并推动业务增长。

该网络研讨会最后介绍了开始使用亚马逊个性化服务的后续步骤,包括访问免费层、参加亚马逊会议,以及利用亚马逊云科技资源进行概念验证实施和获取个性化专业知识。

亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。亚马逊云科技致力于成为企业构建和应用生成式AI的首选,通过生成式AI技术栈,提供用于模型训练和推理的基础设施服务、构建生成式AI应用的大模型等工具、以及开箱即用的生成式AI应用。深耕本地、链接全球 – 在中国,亚马逊云科技通过安全、稳定、可信赖的云服务,助力中国企业加速数字化转型和创新,并深度参与全球化市场。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值