亚马逊云科技-Personalize推荐引擎GenAI

亚马逊云科技-Personalize推荐引擎GenAI实践

关键字: [yt, Amazon Personalize, Amazon Personalize, Recommendation Engine, User Interactions Data, Personalized Recipes, Data Analysis]

本文字数: 400, 阅读完需: 2 分钟

导读

在亚马逊云科技活动上,演讲者介绍了”亚马逊云科技-Personalize推荐引擎GenAI实践”。演讲者阐释了Amazon Personalize如何让开发者能够大规模构建和部署个性化用户体验;具体解释了它利用三种类型的数据(用户-项目交互、项目元数据和用户信息),并为各种用例(如推荐项目、个性化策展列表和用户细分)提供不同的个性化模型。演讲重点阐述了Amazon Personalize如何实现个性化推荐、提高用户参与度和收入增长,并展示了数据质量和分析对于有效模型训练的重要性。

演讲精华

以下是小编为您整理的本次演讲的精华,共100字,阅读时间大约是0分钟。

亚马逊云科技Personalize推荐引擎是一项强大的服务,已有逾1600家来自各行业的全球客户使用,旨在提升用户参与度和增长收入。构建出色的个性化体验需要三种类型的数据集:用户与项目的交互数据,如点击、浏览或购买记录;项目元数据,如类别、价格、描述等;以及用户信息,如年龄、位置或订阅层级等。这些数据可通过S3或流式API提供给Personalize。

接下来,需要选择要训练的个性化模型类型,称为”个性化方案”。将数据集与算法相结合就形成了一个”解决方案”。训练完解决方案后,即可通过流式API或批量推理作业访问推荐结果。

Personalize提供四种主要的个性化方案,可满足不同客户场景的需求。首先是”推荐”算法,用于为每个用户生成直接针对性的推荐内容,常见于主页推荐轮播、电子邮件营销推荐和为新用户展示新产品等场景。相关内容包括灵活的”用户个性化”功能,以及针对电商和视频点播场景的两种优化功能。

其次是”个性化排序”算法,可对特定用户个性化排序策展内容、促销产品、播放列表或搜索结果等,提升内容的曝光率和转化率。相关算法包括通用的”相似项目”算法,以及针对电商的两种优化算法,还有针对视频点播的两种算法。这些算法可应用于整个产品类别排序、优化播放列表顺序、个性化搜索结果排名等场景。

第三种是”用户细分”方法,旨在识别对特定项目或类别最感兴趣的用户群体,常用于营销活动的目标定位,如突出向有购买意向的用户群推广特价商品,或者为新产品和新类别获取潜在用户。相关方法包括两种。

最后,介绍了”批量推荐”算法,用于为大量用户生成个性化推荐内容,并将结果导出,以支持营销等应用场景。

在演示环节,展示了一组特意设计的”坏数据”,其中项目数据集中仅有1%的描述字段是完整的;交互数据集仅包含1000条交互记录,不足Personalize所需的最低1000条门槛;只有1个唯一用户拥有超过2条交互记录,而Personalize要求至少25个这样的用户;99%的项目数据集中的项目在交互数据集中没有任何交互记录;64%的用户数据集中的用户在交互数据集中也没有交互记录;交互数据集中的”事件值”字段存在异常值。

指出,这些问题如数据缺失、ID不匹配、数据稀疏等,都可能严重影响模型的训练质量。建议采取补充历史数据、扩展数据来源、检查异常值合理性等措施来改善数据质量。分享了一个客户在数据分析演示中,仅用了几分钟就发现并解决了一个数据稀疏问题的案例,展示了该功能的实用价值。

最后,总结了数据准备的最佳实践,鼓励观众免费试用Personalize服务,并提供了更多相关资源,以帮助开发者顺利上手该推荐引擎,为各行业客户构建出卓越的个性化用户体验。

总结

在当今数字化时代,为企业提供个性化的用户体验已成为提高参与度和推动收入增长的关键差异化因素。Amazon Personalize 是亚马逊云科技推出的先进服务,它让开发者能够无缝地将个性化推荐集成到网站、应用程序和外部营销工具中,利用与 Amazon.com 个性化引擎相同的机器学习技术。

Amazon Personalize 的核心是一种数据驱动的方法,利用三个关键数据集:用户-项目交互、项目元数据以及用户人口统计或心理统计数据。通过摄取和分析这些数据集,该服务会训练出个性化的机器学习模型,称为”个性化模型”,专门针对特定用例,如推荐目标项目、个性化策展列表或根据亲和力对用户进行细分。

为确保最佳性能,Amazon Personalize 提供了全面的数据分析功能,让开发者能够评估数据质量、识别潜在问题并在训练模型前进行故障排除。这种主动方法确保了个性化引擎运行在高质量、相关的数据上,从而提供准确且具有影响力的推荐。

凭借其用户友好的界面和无缝集成能力,Amazon Personalize 使个性化的力量民主化,让各种规模的企业都能提升客户体验并推动增长,无需拥有广博的机器学习专业知识。拥抱个性化的未来,借助 Amazon Personalize 释放新的参与度和收入机会。

亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。亚马逊云科技致力于成为企业构建和应用生成式AI的首选,通过生成式AI技术栈,提供用于模型训练和推理的基础设施服务、构建生成式AI应用的大模型等工具、以及开箱即用的生成式AI应用。深耕本地、链接全球 – 在中国,亚马逊云科技通过安全、稳定、可信赖的云服务,助力中国企业加速数字化转型和创新,并深度参与全球化市场。

《餐馆点餐管理系统——基于Java和MySQL的课程设计解析》 在信息技术日益发达的今天,餐饮行业的数字化管理已经成为一种趋势。本次课程设计的主题是“餐馆点餐管理系统”,它结合了编程语言Java和数据库管理系统MySQL,旨在帮助初学者理解如何构建一个实际的、具有基本功能的餐饮管理软件。下面,我们将深入探讨这个系统的实现细节及其所涉及的关键知识点。 我们要关注的是数据库设计。在“res_db.sql”文件中,我们可以看到数据库的结构,可能包括菜品表、订单表、顾客信息表等。在MySQL中,我们需要创建这些表格并定义相应的字段,如菜品ID、名称、价格、库存等。此外,还要设置主键、外键来保证数据的一致性和完整性。例如,菜品ID作为主键,确保每个菜品的唯一性;订单表中的顾客ID和菜品ID则作为外键,与顾客信息表和菜品表关联,形成数据间的联系。 接下来,我们来看Java部分。在这个系统中,Java主要负责前端界面的展示和后端逻辑的处理。使用Java Swing或JavaFX库可以创建用户友好的图形用户界面(GUI),让顾客能够方便地浏览菜单、下单。同时,Java还负责与MySQL数据库进行交互,通过JDBC(Java Database Connectivity)API实现数据的增删查改操作。在程序中,我们需要编写SQL语句,比如INSERT用于添加新的菜品信息,SELECT用于查询所有菜品,UPDATE用于更新菜品的价格,DELETE用于删除不再提供的菜品。 在系统设计中,我们还需要考虑一些关键功能的实现。例如,“新增菜品和价格”的功能,需要用户输入菜品信息,然后通过Java程序将这些信息存储到数据库中。在显示所有菜品的功能上,程序需要从数据库获取所有菜品数据,然后在界面上动态生成列表或者表格展示。同时,为了提高用户体验,可能还需要实现搜索和排序功能,允许用户根据菜品名称或价格进行筛选。 另外,安全性也是系统设计的重要一环。在连接数据库时,要避免SQL注入攻击,可以通过预编译的PreparedStatement对象来执行SQL命令。对于用户输入的数据,需要进行验证和过滤,防止非法字符和异常值。 这个“餐馆点餐管理系统”项目涵盖了Java编程、数据库设计与管理、用户界面设计等多个方面,是一个很好的学习实践平台。通过这个项目,初学者不仅可以提升编程技能,还能对数据库管理和软件工程有更深入的理解。在实际开发过程中,还会遇到调试、测试、优化等挑战,这些都是成长为专业开发者不可或缺的经验积累
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值