亚马逊云科技-reInforce加速GenAI审计合规
关键字: [yt, Amazon Bedrock, Generative Ai Compliance, Audit Framework, Model Evaluation, Data Governance, Responsible Development]
本文字数: 400, 阅读完需: 2 分钟
导读
在此次会议演讲中,演讲者们介绍了”亚马逊云科技 reInforce:加速GenAI审计和合规”。他们探讨了如何利用亚马逊云科技服务确保生成式AI应用程序的合规性和审计能力,具体阐释了准确性、公平性、隐私性、弹性、负责任的开发、安全性以及可持续性是需要重点考虑的关键领域。演讲重点阐述了亚马逊云科技服务(如Bedrock、Audit Manager、Config、CloudTrail等)如何为生成式AI应用程序实现准确无偏的模型输出、数据隐私保护、有弹性的基础设施、负责任的开发实践、安全可靠的运营,以及对环境产生可持续影响。
演讲精华
以下是小编为您整理的本次演讲的精华,共100字,阅读时间大约是0分钟。
- 信任与可靠性至关重要。倘若生成式人工智能模型产生不准确的输出,必将削弱人们对该技术的信任,使用户不愿意依赖它。
- 重大决策的影响不容忽视。在医疗、金融、法律、公共政策等领域,生成式人工智能的输出可能会影响重大决策,因此不准确将引发问题。
- 防止错误信息传播至关重要。生成文本、图像、音频等内容的生成式人工智能模型需要产生准确信息,以避免传播错误信息或虚假信息,这可能会带来严重的社会影响。
- 维护品牌和声誉至关重要。企业扩大使用生成式人工智能时,需要注意潜在的品牌和财务声誉风险。
- 公平性和偏差缓解不可或缺。准确性有助于确保生成式人工智能公正对待不同人口统计群体,避免意外的歧视。
- 安全性至关重要。在自动驾驶汽车和机器人等应用中,需要极高的准确性来确保系统安全运行。
- 监管合规性不容忽视。许多行业对准确性和透明度有严格的监管要求,人工智能系统也不例外。
为了确保准确性,亚马逊云科技Bedrock提供了模型评估功能,允许设置作业来评估测试数据集对模型的结果。用户可以使用开源数据集或自己的数据集,发送一系列提示,评估指标如毒性等,从而了解模型的准确性表现。亚马逊云科技Audit Manager还可以自动收集Bedrock的配置信息,如是否启用了模型评估作业、过滤器等,作为审计证据。
第二个领域是公平性。演讲者通过一个示例说明了公平性的重要性。当要求Amazon Ask应用程序继续”接待员到达办公室并开始勤勉工作”的故事时,应用程序的回答假设接待员是女性。如果每次提出类似问题,应用程序都假设接待员是女性,那就存在公平性问题。因此,我们需要确保生成式人工智能应用程序的公平性,即其给出的答复是公正的。
公平性考虑包容性、公平性和多样性,以解决数据、输出和模型输入中的偏见和歧视。制定标准可能是复杂和困难的,但忽视公平性会给用户和社区带来有害后果。
为了确保公平性,组织可以进行偏差评估,包括:
- 评估训练数据,寻找可能引入偏差的线索。
- 定义偏差指标。
- 数据分析。
- 跨组使用性能指标、公平性指标、偏差检测技术(如统计测试和可视化)对模型进行评估。
- 缓解策略,如数据增广、算法调整或后处理。
- 持续监控,定期使用一组提示测试模型输出,查看是否存在偏差。
- 定期审计和反馈循环。
通过全面的偏差评估,组织可以确保模型更加公平、公正,降低歧视风险。亚马逊云科技Bedrock的模型评估功能还支持人工审查,有助于评估公平性。
第三个领域是隐私性。生成式AI模型训练时使用的是广泛的数据,客户通常无法控制这些数据,因此存在个人身份信息被记录并泄露的风险。为了保护隐私,可以使用差分隐私技术,即在数据集中引入一些噪声,使其无法指向真实个人。此外,大型语言模型可能会记住个人的社会安全号码、信用卡号码、驾驶证号码、地址等私人信息,从而带来声誉和财务损失的风险。
为了保护隐私,亚马逊云科技CloudTrail数据事件功能可以跟踪对特定服务(如S3)的特定操作,如Put、Get等,从而监控对用于训练模型的数据资源的访问。如果发现未经授权的操作,可以将数据事件发送到CloudWatch,触发告警并启动Amazon Web Services Incident Manager中的升级流程。这些工具有助于防止数据外泄,保护隐私。
第四个领域是弹性。弹性是指生成式AI系统能够适应环境的意外变化,在遭受攻击或问题时能够保持一致的性能,并且能够快速恢复到正常状态。为了确保弹性,可以进行弹性测试,利用亚马逊云科技的自动扩展和负载均衡服务来应对负载变化,并备份和回滚模型及训练数据。
亚马逊云科技Config可以帮助强制执行弹性控制措施。例如,可以使用Amazon Config规则确保DynamoDB表启用了点恢复功能,从而实现备份和恢复。这些规则可以通过控制台、CloudFormation或Terraform部署,还可以添加自动修复操作。亚马逊云科技Audit Manager还可以使用这些自定义规则作为合规性证据。
第五个领域是负责任。负责任AI是所有其他领域的总和,包括确保公平性、消除偏见、保护隐私、确保安全性等。所有参与运营生成式AI的各方都应对AI系统的结果负责,无论是出于何种意图。为此,需要建立组织实践、治理、技术控制措施、风险评估、偏差评估、隐私评估、数据治理评估等。亚马逊云科技Config的合规包(Conformance Pack)可以帮助您部署一组Config规则,并通过仪表板快速了解合规状况。
第六个领域是安全性。生成式AI工作负载的安全性至关重要,包括训练数据、模型本身以及基础架构的安全。如果安全性出现问题,将导致不良后果。亚马逊云科技Control Tower服务可以帮助建立多账户管理的基础,实施安全控制措施。亚马逊云科技Security Hub则提供了一个统一的视图,显示来自多个亚马逊云科技服务的安全发现结果。
第七个领域是可持续性。生成式AI需要大量的计算能力,因此能源消耗是一个重要问题。亚马逊云科技非常重视可持续性,通过使用更高效的硬件(如Graviton和Trainium处理器)、优化算法和存储、模型重用等措施来降低能耗和碳足迹。亚马逊云科技成本浏览器中的碳足迹工具可以让您查看工作负载的环境影响,而亚马逊云科技的可持续性架构原则则提供了设计可持续基础架构的最佳实践。
最后,总结了Amazon Audit Manager生成式AI最佳实践框架的8个领域:准确性、公平性、隐私性、弹性、负责任、安全性、可持续性,以及32个控制目标和110项控制措施。该框架为客户提供了一个在不确定的监管环境中遵从最佳实践的路线图,有助于负责任地开发和部署生成式AI模型。
演讲者强调,要充分利用亚马逊云科技的自动化工具和服务,如Bedrock、CloudTrail、Config、Audit Manager等,以简化生成式AI合规审计之旅。这些工具可以自动收集证据、评估模型、实施控制措施、监控基础架构等,以确保准确性、公平性、隐私性、弹性、负责任、安全性和可持续性。随着监管要求的出台,通过自动化和简化,客户将做好准备,满足合规性要求。
总结
在这全面的演讲中,演讲者深入探讨了使用亚马逊云科技服务(如Amazon Bedrock)构建的生成式人工智能应用程序的审计与合规性的复杂性。他们强调,与传统的预测性人工智能相比,生成式人工智能模型带来了独特的挑战,需要采取量身定制的方法,以确保准确性、公平性、隐私性、弹性、负责任的开发、安全性、安全性和可持续性。
演讲者介绍了亚马逊云科技 Audit Manager,这是一项通过自动化跨各种亚马逊云科技服务收集证据,从而简化合规报告与监控的服务。他们推出了亚马逊云科技生成式人工智能最佳实践框架,该框架包括8个领域的110项控制措施,为负责任的人工智能开发与部署提供了路线图。
在整个演讲过程中,演讲者强调了各种亚马逊云科技工具与功能,可以帮助解决生成式人工智能应用程序的独特合规性要求。这些包括:
- 在Amazon Bedrock中进行模型评估,以评估准确性与公平性。
- Bedrock中的防护措施,用于过滤不当或不安全的输出。
- CloudTrail数据事件,用于监控数据访问与潜在的数据外泄。
- 亚马逊云科技配置规则,用于实施合规控制并启用自动化补救。
- 亚马逊云科技事件管理器,用于升级与管理隐私事件。
- 亚马逊云科技成本浏览器的碳足迹工具,用于监控可持续性。
- 新的亚马逊云科技架构可持续性支柱,用于设计环境友好型架构。
演讲者强调了理解生成式人工智能合规性的细微差别、利用自动化与工具、设计安全与弹性的基础架构,以及利用亚马逊云科技服务来简化生成式人工智能工作负载的审计与合规之旅的重要性。
亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。亚马逊云科技致力于成为企业构建和应用生成式AI的首选,通过生成式AI技术栈,提供用于模型训练和推理的基础设施服务、构建生成式AI应用的大模型等工具、以及开箱即用的生成式AI应用。深耕本地、链接全球 -- 在中国,亚马逊云科技通过安全、稳定、可信赖的云服务,助力中国企业加速数字化转型和创新,并深度参与全球化市场。