亚马逊云科技-Deloitte帮助客户遵守GenAI合规性

亚马逊云科技-德勤帮助客户遵守GenAI合规性

关键字: [yt, Generative Ai Risks, Proactive Risk Assessment, Deloitte Trustworthy Ai Framework, Audit Manager Framework, Deloitte Nexus Integration]

本文字数: 400, 阅读完需: 2 分钟

导读

亚马逊云科技审计经理John Fisher和德勤的Elaine Lee探讨了与生成式AI相关的挑战和风险,例如偏见、隐私和安全问题、新兴能力、幻觉、不当行为以及成本和问责问题。他们介绍了德勤的”可信任AI框架”,该框架通过与隐私、透明度、公平性、问责制、稳健性、可靠性和安全性相关的控制措施,为解决这些风险提供了指导。该框架与亚马逊云科技审计经理相集成,允许组织自动化审计和合规活动,包括使用Amazon SageMaker开发的生成式AI模型。德勤的Nexus数字神经中心为评估跨亚马逊云科技和非亚马逊云科技技术的合规性提供了一个统一的视角。

演讲精华

以下是小编为您整理的本次演讲的精华,共100字,阅读时间大约是0分钟。

在当前生成式人工智能(GenAI)快速发展的大环境下,确保其负责任和合乎道德的应用成为了一个迫切的需求。亚马逊云科技(亚马逊云科技)与德勤公司携手合作,旨在帮助客户识别和缓解GenAI带来的风险,并遵守相关的合规性要求。

生成式AI虽然具有变革性的潜力,但也面临着诸多挑战。德勤云网络安全经理Elaine Lee列举了六大风险领域:偏差、隐私和安全性、新兴能力、虚构、不当行为以及成本和责任问题。

首先,关于偏差风险,Lee举例说明,一家电子商务公司不得不放弃其招聘工具,因为该工具在过去10年中主要基于男性简历数据进行训练,从而产生了对男性候选人的偏向性。这凸显了评估数据源和训练方法,缓解潜在偏差的重要性。

其次,在隐私和安全性方面,Lee提到一个AI驱动的面部识别平台遭到了严厉的反对,因为它可以通过比对互联网上数十亿张照片来识别个人身份,引发了严重的隐私担忧。这要求在架构模型时优先考虑数据隐私,并加强系统安全性。

第三,新兴能力指的是模型在演化过程中可能展现出意料之外的行为,这增加了对系统输出的理解和测试的复杂性。一家知名科技公司曾推出AI聊天机器人,旨在通过与人类的互动来学习和改进对话能力,但在24小时内,该机器人就开始发布攻击性言论,因为一些用户利用了它的学习能力。

第四,虚构现象指的是模型生成的输出存在事实错误或无意义的情况。Lee提到,一家航空公司因其聊天机器人提供了不准确的信息而被法院判令赔偿。具体情况是,客户询问是否可以因丧葬获得退款,聊天机器人错误地回答可以在90天内申请折扣。

第五,不当行为风险体现在模型可能生成不当或攻击性的语言。知名的AI模型在训练时使用了大量数据,因此需要从模型中移除不当语言。

最后,成本和责任问题也值得重视。对大型模型进行微调训练的过程可能极其昂贵,需要有效的成本管理策略。同时,AI系统做出的行为和决策的责任归属也是一个复杂的问题,需要仔细考虑。

面对这些挑战,德勤建议组织采取积极主动的方式进行风险评估。首先,组织需要评估当前的AI风险管理活动,如提高员工对AI风险的认识、制定主动的监管参与计划等。其次,组织应制定AI治理策略,明确需要达到的合规性结果、时间线和所需资源。第三,培训员工了解新的监管要求,识别需要采取的政策或程序变更。

在风险管理过程中,组织需要将AI风险纳入更广泛的风险管理框架,评估潜在影响并适应治理模型。此外,还需要了解数据管理和偏差评估,确保公平性和透明度;制定AI计划的风险和机遇组合视图;积极学习,而不是被动应对。

为了帮助客户适应治理模型,德勤提出了”可信任AI框架”。该框架是一个强大的工具,旨在指导组织评估和缓解AI采用过程中的潜在风险,确保系统在技术、道德和法律层面的合规性。框架围绕隐私、透明度、公平性、可解释性、可靠性、安全性等七个关键特征构建。

德勤的”可信任AI框架”直接针对前述六大风险领域提供了控制措施。例如,针对偏差风险,框架中包含定期进行偏差审计、在应用程序中实施审核和过滤等控制措施。对于隐私和安全性风险,框架提供了如何强化对外部模型访问的政策和实践的指导。针对新兴能力,框架建议监控模型中出现的新技能,并实施微调。对于虚构输出,框架建议持续监控输出和性能,进行额外的微调和提示工程。此外,框架还包括实施健全的质量保证流程,以减少不当响应的风险,维护客户信任。最后,为了控制成本,框架建议利用亚马逊云科技的成本核算和预算功能,并使用开源模型来降低成本。

Amazon Audit Manager新版本中包含了一个生成式AI最佳实践框架,融合了NIST AI 101、ISO IEC 42001、德勤可信任AI框架等标准,帮助客户自动化合规性保证活动。该框架包括8个领域和110个控制措施,利用亚马逊云科技配置、CloudTrail和CloudWatch等数据源进行评估。亚马逊云科技专家John Fisher解释说,除了自动化的合规性检查外,框架还提供了手动观察和提示,以确保输出的适当性。值得一提的是,Amazon Audit Manager最新版本还支持监控Amazon SageMaker中的大型语言模型开发活动。

Amazon Audit Manager最初的开发就是与德勤公司合作完成的,体现了双方的紧密协作关系。Audit Manager允许客户将亚马逊云科技使用情况映射到各种框架,支持多种开箱即用的框架,并可根据需要进行定制。它还推出了”通用控制”的新功能,使合规性语言上升到风险管理和合规官员可以理解的层面,同时将技术细节抽象化为”核心控制”。Audit Manager可以自动收集配置数据、进行自动化测试,支持跨团队的高效协作,并生成整理有序的证据包,随时可以提交给审计师。

为了进一步增强Amazon Audit Manager的功能,德勤推出了Nexus数字神经中枢平台。该平台可与Amazon Audit Manager集成,提供单一视图,集中展示亚马逊云科技和非亚马逊云科技环境的合规状况。Nexus平台支持评估目标和范围设置、合规程序启动、证据收集、AI辅助合规性分析以及自定义报告和仪表板等功能。通过Nexus,客户可以将GenAI框架与组织的整体风险管理相集成,实现数据的聚合和分析。

总的来说,亚马逊云科技和德勤的合作旨在为客户提供全面的风险评估和治理框架,确保生成式AI的负责任和合乎道德的采用。Amazon Audit Manager和Nexus平台则为客户提供了自动化的合规性管理工具,帮助识别和缓解潜在风险,实现跨环境的一致性合规。这种紧密协作有助于释放生成式AI的变革潜力,同时有效管控相关风险。

总结

在不断演进的生成式人工智能(GenAI)领域,组织面临着诸多挑战,从偏见和隐私问题到新兴能力、幻觉、不当行为和成本管理等。为了应对这些复杂性,德勤公司开发了一个值得信赖的人工智能框架,作为全面指南,涵盖了七个关键特征:隐私、透明度、公平性、问责制、稳健性、可靠性和安全性。

该框架为缓解GenAI领域确定的六大关键风险提供了实际解决方案。它提供了进行偏差审计、实施数据隐私政策、监控新兴能力、持续输出监控、健壮的质量保证流程和成本优化策略的控制措施。通过结合利用该框架和亚马逊云科技 Audit Manager,组织可以使其实践与适用的法律法规保持一致,部分自动化保证活动,并洞察其合规状态。

此外,德勤的Nexus数字神经中枢充当单一窗口,将Audit Manager结果与非亚马逊云科技输入相集成。该平台使组织能够建立审计和合规程序,从各种来源汇总证据,利用人工智能逻辑进行合规性分析,并生成自定义报告仪表板。通过采用这种全面的方式,组织可以自信地驾驭GenAI领域,在降低风险的同时释放其变革潜力。

亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。亚马逊云科技致力于成为企业构建和应用生成式AI的首选,通过生成式AI技术栈,提供用于模型训练和推理的基础设施服务、构建生成式AI应用的大模型等工具、以及开箱即用的生成式AI应用。深耕本地、链接全球 -- 在中国,亚马逊云科技通过安全、稳定、可信赖的云服务,助力中国企业加速数字化转型和创新,并深度参与全球化市场。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值