亚马逊云科技-GenAI之旅与Poly AI闲聊

亚马逊云科技-GenAI之旅与Poly AI闲聊

关键字: [yt, Poly AI, Generative Ai Innovation, Customer Service Voice Assistants, Enterprise Contact Centers, Voice Customization, Brand Personality, Conversational Ai Training, Customer Service Conversations, Responsible Ai Practices, Ai Transparency, Model Interpretability]

本文字数: 400, 阅读完需: 2 分钟

导读

在这段视频中,来自Poly AI的Ashley讨论了该公司如何利用生成式人工智能模型为企业客户创建定制的语音助手。她解释说,Poly AI专注于通过电话进行口语对话,根据每个客户的需求调整语音助手的语气、节奏和语言。Poly AI与AMAZON云科技合作,在SAGEMAKER上训练其语音克隆和合成模型。Ashley还谈到了负责任的人工智能实践的重要性,例如考虑是否应该预先披露该语音是人工智能助手。该演示强调了Poly AI的解决方案如何实现个性化的客户服务体验、高效处理常见查询,以及与现有业务流程的集成。

演讲精华

以下是小编为您整理的本次演讲的精华,共100字,阅读时间大约是0分钟。

在这段内容丰富的对话中,Michael与Poly AI的Ashley深入探讨了生成式人工智能(GenAI)在企业客户服务领域的创新应用,以及与亚马逊云科技(亚马逊云科技)的紧密合作。Ashley阐释了Poly AI的核心业务——为企业客户服务中心提供基于大型语言模型的客户导向语音助手,协助回答账户管理问题、安排送货、进行价格匹配等任务。他们的语音AI系统已经覆盖了旅游、酒店、零售、公用事业和金融服务等多个行业。

鉴于不同企业的个性化需求,Poly AI意识到定制化的重要性。因此,它们在部署过程中会与每个企业合作,创建代表企业的语音个性,并将其连接到不同的业务流程,确保语音语调和语速与目标受众相匹配。例如,在为一些服务老年人群的行业提供服务时,需要调整语音助手的语速以适应这一场景。Ashley具体提到,Poly AI已经与一些Amazon Connect的客户合作,如在欧洲为阿姆斯特丹市提供英语和荷兰语双语服务,以及在美国为一家旅游预订平台提供服务。

接下来,Michael询问了Poly AI在训练生成式语音模型方面的经验,以及与亚马逊云科技的SageMaker合作情况。Ashley表示,Poly AI的联合创始人在剑桥大学完成了博士学位,在这一领域拥有丰富的专业知识。它们与SageMaker合作,训练下一代语音克隆和语音合成算法,以增强企业在语音克隆过程中引入自身品牌个性的能力。Poly AI专注于针对电话对话优化这些技术,实现高质量的应用。

当被问及未来的发展方向时,Ashley透露Poly AI正在探索通过Amazon Bedrock等平台提供语音模型API的可能性。同时,作为Bedrock的用户,它们也期待利用其提供的防护措施,以增强模型的可控性和可解释性。Ashley表示,Poly AI经常收到关于如何创建更多防护措施的询问,与亚马逊云科技这样的企业级参与者合作,可以利用Bedrock提供的防护措施解决这一问题。

在负责任的AI实践方面,Ashley承认Poly AI作为一家年轻的成长中公司,正在寻求亚马逊云科技、Anthropic等公司的指导。它们关注的问题包括是否需要声明AI解决方案的身份,目前它们将这一决定留给企业自行决定。Ashley还提到,Poly AI正在积累企业客户服务对话的独特数据集,这可能为它们在Bedrock上提供有价值的服务。

最后,Michael对Ashley的分享表示感谢,并表示Poly AI的经验将启发未来的模型构建者。Ashley也对此次对话机会表示感谢。总的来说,这段对话深入探讨了Poly AI与亚马逊云科技在生成式AI领域的合作,包括语音模型的训练、负责任AI实践的探索,以及未来在Bedrock等平台上提供API服务的可能性。Poly AI正在利用大型语言模型为企业客户服务中心提供定制化的语音助手,与亚马逊云科技的合作旨在推进这一领域的创新应用。

总结

波利AI公司正处于革新客户服务的前沿,凭借其尖端的语音AI助手。该公司利用大型语言模型和生成式AI的强大功能,为每个企业量身定制语音助手,与其业务流程和品牌形象无缝集成。波利AI创新的方法确保了个性化的体验,为不同人口统计数据提供细微的语气和语速。

通过与亚马逊云科技建立战略合作伙伴关系,波利AI利用SageMaker的功能来训练其语音克隆和合成算法,实现零射击应用,并增强企业将其品牌个性融入语音助手的能力。随着该公司积累独特的客户服务对话数据集,波利AI正在探索将其解决方案作为API提供或与其他平台集成的潜力。

认识到负责任的AI实践的重要性,波利AI与行业合作伙伴亚马逊云科技和Anthropic合作,探讨防护措施、可解释性和道德考虑的复杂性。该公司坚持透明度和遵守企业关于AI披露的偏好,为生成式AI领域的负责任创新树立了基准。

随着客户服务的未来不断演进,波利AI在语音AI助手领域的开拓性工作使其成为推动力量,让企业能够提供卓越的个性化体验,同时坚持最高标准的负责任AI实践。

亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。亚马逊云科技致力于成为企业构建和应用生成式AI的首选,通过生成式AI技术栈,提供用于模型训练和推理的基础设施服务、构建生成式AI应用的大模型等工具、以及开箱即用的生成式AI应用。深耕本地、链接全球 – 在中国,亚马逊云科技通过安全、稳定、可信赖的云服务,助力中国企业加速数字化转型和创新,并深度参与全球化市场。

汉字字库存储芯片扩展实验 # 汉字字库存储芯片扩展实验 ## 实验目的 1. 了解汉字字库的存储原理和结构 2. 掌握存储芯片扩展技术 3. 学习如何通过硬件扩展实现大容量汉字字库存储 ## 实验原理 ### 汉字字库存储基础 - 汉字通常采用点阵方式存储(如16×16、24×24、32×32点阵) - 每个汉字需要占用32字节(16×16)到128字节(32×32)不等的存储空间 - 国标GB2312-80包含6763个汉字,需要较大存储容量 ### 存储芯片扩展方法 1. **位扩展**:增加数据总线宽度 2. **字扩展**:增加存储单元数量 3. **混合扩展**:同时进行位扩展和字扩展 ## 实验设备 - 单片机开发板(如STC89C52) - 存储芯片(如27C256、29C040等) - 逻辑门电路芯片(如74HC138、74HC373等) - 示波器、万用表等测试设备 - 连接线若干 ## 实验步骤 ### 1. 单芯片汉字存储实验 1. 连接27C256 EPROM芯片到单片机系统 2. 将16×16点阵汉字字库写入芯片 3. 编写程序读取并显示汉字 ### 2. 存储芯片字扩展实验 1. 使用地址译码器(如74HC138)扩展多片27C256 2. 将完整GB2312字库分布到各芯片中 3. 编写程序实现跨芯片汉字读取 ### 3. 存储芯片位扩展实验 1. 连接两片27C256实现16位数据总线扩展 2. 优化字库存储结构,提高读取速度 3. 测试并比较扩展前后的性能差异 ## 实验代码示例(单片机部分) ```c #include <reg52.h> #include <intrins.h> // 定义存储芯片控制引脚 sbit CE = P2^7; // 片选 sbit OE = P2^6; // 输出使能 sbit
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值