attention

基础网络结构

facenet

  1. 主干网络:resnet50

  2. 损失函数:nn.CrossEntropyLoss() + 三元组损失

pyTorch实现

facenet

import torch
from torchvision.models.resnet import resnet50
from torch import nn
import torch
from torch.nn import functional as F

class FaceNetModel(nn.Module):
    def __init__(self, emd_size = 256, num_class = 1000):
        super(FaceNetModel, self).__init__()
        self.emd_size = emd_size
        self.resnet = resnet50()
        self.faceNet = nn.Sequential(
            self.resnet.conv1,
            self.resnet.bn1,
            self.resnet.relu,
            self.resnet.maxpool,

            self.resnet.layer1,
            self.resnet.layer2,
            self.resnet.layer3,
            self.resnet.layer4,
        )
        self.fc = nn.Linear(32768, emd_size)
        self.l2_norm = torch.nn.functional.normalize
        self.fc_class = nn.Linear(emd_size, num_class)

    def forward(self, x):
        x = self.faceNet(x)
        #x = x.view(x.size(0), -1)
        x = torch.flatten(x, 1)
        x = self.fc(x)
        x = self.l2_norm(x)
        return x

    def forward_class(self, x):
        x = self.forward(x)
        x = self.fc_class(x)
        return x

if __name__ == '__main__':
    from torchsummary import summary

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = FaceNetModel().to(device)
    summary(model, input_size = (3, 128, 128))

用LFW数据集测试,模型收敛良好。

注意力机制

SENET

实现方式

  1. 对输入进来的特征层进行全局平均池化

  2. 然后进行两次全连接,第一次全连接神经元个数较少,第二次全连接神经元个数和输入特征层相同

  3. 在完成两次全连接后,我们再取一次Sigmoid将值固定到0-1之间,此时我们获得了输入特征层每一个通道的权值(0-1之间)。

  4. 在获得这个权值后,我们将这个权值乘上原输入特征层即可。

pyTorch实现

# -*- encoding: utf-8 -*-
"""
@File    : seNet.py
@Time    : 2021-12-29 17:44
@Author  : XD
@Email   : gudianpai@qq.com
@Software: PyCharm
"""
import torch
from torch import nn
from torchsummary import summary
class seNet(nn.Module):
    def __init__(self, channel, ratio = 16):
        super(seNet, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(channel, channel // ratio, bias = False),
            nn.ReLU(),
            nn.Linear(channel // ratio, channel, bias = False),
            nn.Sigmoid()
        )

    def forward(self, x):
        b, c, h, w = x.size()
        # b, c, h, w -> b, c, 1, 1
        avg = self.avg_pool(x).view(b, c)

        #b, c, h, w -> b, c // ratio -> b, c -> b, c, 1, 1
        fc = self.fc(avg).view(b, c, 1, 1)
        return x * fc


model = seNet(channel = 512)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
print(model)
summary(model, input_size = [(512, 26, 26)], batch_size = 2, device = "cuda")

测试

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
 AdaptiveAvgPool2d-1             [2, 512, 1, 1]               0
            Linear-2                    [2, 32]          16,384
              ReLU-3                    [2, 32]               0
            Linear-4                   [2, 512]          16,384
           Sigmoid-5                   [2, 512]               0
================================================================
Total params: 32,768
Trainable params: 32,768
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 2.64
Forward/backward pass size (MB): 0.02
Params size (MB): 0.12
Estimated Total Size (MB): 2.79
----------------------------------------------------------------

Process finished with exit code 0

CBAM

实现方式

图像的上半部分为通道注意力机制,通道注意力机制的实现可以分为两个部分,我们会对输入进来的单个特征层,分别进行全局平均池化和全局最大池化。之后对平均池化和最大池化的结果,利用共享的全连接层进行处理,我们会对处理后的两个结果进行相加,然后取一个sigmoid,此时我们获得了输入特征层每一个通道的权值(0-1之间)。在获得这个权值后,我们将这个权值乘上原输入特征层即可。图像的下半部分为空间注意力机制,我们会对输入进来的特征层,在每一个特征点的通道上取最大值和平均值。之后将这两个结果进行一个堆叠,利用一次通道数为1的卷积调整通道数,然后取一个sigmoid,此时我们获得了输入特征层每一个特征点的权值(0-1之间)。在获得这个权值后,我们将这个权值乘上原输入特征层即可。

pyTorch实现

# -*- encoding: utf-8 -*-
"""
@File    : CBAM.py
@Time    : 2021-12-29 17:44
@Author  : XD
@Email   : gudianpai@qq.com
@Software: PyCharm
"""
from torchsummary import summary
import torch
from torch import nn
class ChannelAttention(nn.Module):
    def __init__(self, in_planes, ratio=8):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)

        # 利用1x1卷积代替全连接
        self.fc1   = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
        self.relu1 = nn.ReLU()
        self.fc2   = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)

        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
        max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
        out = avg_out + max_out
        return self.sigmoid(out)

class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super(SpatialAttention, self).__init__()

        assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
        padding = 3 if kernel_size == 7 else 1
        self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        avg_out = torch.mean(x, dim=1, keepdim=True)
        max_out, _ = torch.max(x, dim=1, keepdim=True)
        x = torch.cat([avg_out, max_out], dim=1)
        x = self.conv1(x)
        return self.sigmoid(x)

class cbam_block(nn.Module):
    def __init__(self, channel, ratio=8, kernel_size=7):
        super(cbam_block, self).__init__()
        self.channelattention = ChannelAttention(channel, ratio=ratio)
        self.spatialattention = SpatialAttention(kernel_size=kernel_size)

    def forward(self, x):
        x = x * self.channelattention(x)
        x = x * self.spatialattention(x)
        return x

model = cbam_block(channel = 512)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
print(model)
summary(model, input_size = [(512, 26, 26)], batch_size = 2, device = "cuda")

测试

   Layer (type)               Output Shape         Param #
================================================================
 AdaptiveAvgPool2d-1             [2, 512, 1, 1]               0
            Conv2d-2              [2, 64, 1, 1]          32,768
              ReLU-3              [2, 64, 1, 1]               0
            Conv2d-4             [2, 512, 1, 1]          32,768
 AdaptiveMaxPool2d-5             [2, 512, 1, 1]               0
            Conv2d-6              [2, 64, 1, 1]          32,768
              ReLU-7              [2, 64, 1, 1]               0
            Conv2d-8             [2, 512, 1, 1]          32,768
           Sigmoid-9             [2, 512, 1, 1]               0
 ChannelAttention-10             [2, 512, 1, 1]               0
           Conv2d-11             [2, 1, 26, 26]              98
          Sigmoid-12             [2, 1, 26, 26]               0
 SpatialAttention-13             [2, 1, 26, 26]               0
================================================================
Total params: 131,170
Trainable params: 131,170
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 2.64
Forward/backward pass size (MB): 0.08
Params size (MB): 0.50
Estimated Total Size (MB): 3.22
----------------------------------------------------------------

ECA

实现方式

ECANet的作者认为SENet对通道注意力机制的预测带来了副作用,捕获所有通道的依赖关系是低效并且是不必要的。在ECANet的论文中,作者认为卷积具有良好的跨通道信息获取能力。ECA模块的思想是非常简单的,它去除了原来SE模块中的全连接层,直接在全局平均池化之后的特征上通过一个1D卷积进行学习。

pyTorch实现

class eca_block(nn.Module):
    def __init__(self, channel, b=1, gamma=2):
        super(eca_block, self).__init__()
        kernel_size = int(abs((math.log(channel, 2) + b) / gamma))
        kernel_size = kernel_size if kernel_size % 2 else kernel_size + 1
        
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.conv = nn.Conv1d(1, 1, kernel_size=kernel_size, padding=(kernel_size - 1) // 2, bias=False) 
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        y = self.avg_pool(x)
        y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)
        y = self.sigmoid(y)
        return x * y.expand_as(x)

测试

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
 AdaptiveAvgPool2d-1             [2, 512, 1, 1]               0
            Conv1d-2                [2, 1, 512]               5
           Sigmoid-3             [2, 512, 1, 1]               0
================================================================
Total params: 5
Trainable params: 5
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 2.64
Forward/backward pass size (MB): 0.02
Params size (MB): 0.00
Estimated Total Size (MB): 2.66
----------------------------------------------------------------

NEXT

模型融合

将注意力机制引入我们的主干网络,以提高性能。

CAM可视化

可视化必要性:CAM可以帮助我们发现问题,改进结构。解释模型。

img

2
Params size (MB): 0.00
Estimated Total Size (MB): 2.66


# NEXT

## 模型融合

将注意力机制引入我们的主干网络,以提高性能。

## CAM可视化

可视化必要性:CAM可以帮助我们发现问题,改进结构。解释模型。



![img](https://img-blog.csdnimg.cn/img_convert/1ccbc5e24616eabb4916ced338297d8c.png)







  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值