Tensorflow2版本对于Tensorflow1版本的部分变化

编程基础 专栏收录该内容
2 篇文章 0 订阅

Tensorflow2版本相对于1版本做了很大的改进,更加方便了用户开发深度学习神经网络模型。
一些代码改进:
①tf.train.GradientDescentOptimizer()改成tf.compat.v1.train.GradientDescentOptimizer()
②tf.random_uniform改成tf.random.uniform
③tf.global_variables_initializer()变成tf.compat.v1.global_variables_initializer()
④tf.Session()变成tf.compat.v1.Session()
⑤tf.placeholder变成tf.compat.v1.placeholder
⑥当tf.compat.v1.placeholder占位时,出现错误:tf.compat.v1.placeholder() is not compatible with eager execution.要在占位前面加上一行:tf.compat.v1.disable_eager_execution()
总之,Tensorflow2版本和一版本有很大不同,这个在学习的过程中慢慢体会熟练就行。比如很多函数都要在前面加上compat.v1。还有Tensorflow2版本有一个子模块keras:
tf.keras绝⼤部分功能和兼容多种后端的Keras库⽤法完全⼀样,但并⾮全部,它和TensorFlow之间的结合更为紧密。所以通过tensorflow建立神经网路框架时,可以用集成度较高的keras函数库来搭建。

  • 0
    点赞
  • 0
    评论
  • 4
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 1024 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值