【Anaconda+Pycharm+CUDA+CUdnn+PyTorch+Tensorflow】
课程来源
一、Anaconda
win+R cmd
打开控制台
conda -V
查看版本以及是否安装成功
安装完成
二、Anaconda激活和创建环境
win+R cmd
打开控制台
C:\Users\Administrator>activate
(base) C:\Users\Administrator>conda create -n py39 python=3.9
py3.9 环境创建完成
按照提示 conda activate py39
激活py39
环境 ,python
查看 python 版本
(base) C:\Users\Administrator>conda activate py39
(py39) C:\Users\Administrator>python
Python 3.9.11 (main, Mar 30 2022, 02:45:55) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>
Use exit() or Ctrl-Z plus Return to exit
按照提示 conda deactivate
回到base
环境 ,python
查看 python 版本
(py39) C:\Users\Administrator>conda deactivate
(base) C:\Users\Administrator>python
Python 3.8.5 (default, Sep 3 2020, 21:29:08) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>
删除虚拟环境:
删除环境:
使用命令conda remove -n your_env_name(虚拟环境名称) --all, 即可删除。
删除虚拟环境中的包:
使用命令conda remove --name $your_env_name $package_name(包名) 即可
三、PyCharm的安装和环境等
打开安装程序
安装地址自己选或者默认
重启电脑
打开PyCharm
新建项目并且使用我们建立的py39作为解释器
run一下demo
D:\Anaconda\envs\py39\python.exe C:/Users/Administrator/PycharmProjects/pythonProject/main.py
Hi, PyCharm
Process finished with exit code 0
安装完成
在setting->tools->找到终端,把power换成cmd的
四、CUDA安装
1、查看自己显卡驱动(这里我已经安装了cuda待会卸载)
Driver Version: 461.40
Win+R cmd 进入命令行
cd C:\Program Files\NVIDIA Corporation\NVSMI
nvidia-smi
2、根据显卡驱动的版本选择合适的cuda版本 官方
3、cuda版本下载 官方
4、安装
新建一个文件夹用于管理cuda并且进行下一步安装
cuda development 和 cuda document 选择cuda1
Sample的选cuda2
用于区分开
显示没有VS的环境,不要紧 ,我们继续安装
很多东西没有,也不要紧,安装结束
查看是否安装完成
(base) C:\Users\Administrator>nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Mon_Nov_30_19:15:10_Pacific_Standard_Time_2020
Cuda compilation tools, release 11.2, V11.2.67
Build cuda_11.2.r11.2/compiler.29373293_0
查看环境变量
还有path里面
重启电脑,安装完成
五,cudnn神经网络加速库的配置
下载链接 可能要注册一下,用q邮箱就可以
跟cuda版本对应
配置完成
六、安装pytorch
步骤其实就是:打开新建的python环境,然后在官网找到你的cuda版本对应能用的pytorch版本,然后直接用官网的那个命令conda install去安装就好了;可能会提醒你要update你的conda,按照提示的步骤走就好了。
Microsoft Windows [版本 10.0.19042.1586]
(c) Microsoft Corporation。保留所有权利。
C:\Users\Administrator>conda activate py39
(py39) C:\Users\Administrator>conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.2 -c pytorch -c conda-forge
下载得很慢 方法
2022/4/3 但是我试过几个办法之后 就出很多问题 在solving environment这一步failed
所以我换成pip安装了
pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html
2022/4/4 还是失败
我的解决办法是:把cuda、Anaconda卸载,安装cuda10.1 ,重装Anaconda,然后重新走一遍。最后成功,只是安装很慢,等就完事了。
附上测试代码
!!!!!!注意测试代码的时候要把pycharm的项目解释器换成你安装所在的那个python环境!!!!!!
import torch
a = torch.cuda.is_available()
print(a)
ngpu= 1
device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu")
print(device)
print(torch.cuda.get_device_name(0))
print(torch.rand(3,3).cuda())
七、TensorFlow安装
新建一个python环境
C:\Users\Administrator>activate
(base) C:\Users\Administrator>conda create -n tf python=3.9
进入环境
(base) C:\Users\Administrator>conda activate tf
(tf) C:\Users\Administrator>pip install tensorflow_gpu==2.3.0 -i https://pypi.douban.com/simple --trusted-host pypi.douban.com
(提示你版本找不到的话,就按照提示安装更高的版本)
测试代码;
import tensorflow as tf
#查看tensorflow版本
print(tf.__version__)
print('GPU', tf.test.is_gpu_available())
a = tf.constant(2.0)
b = tf.constant(4.0)
print(a + b)
成功显示:
至此,深度学习pytorch和TensorFlow都已经配置完成