【Anaconda+Pycharm+CUDA+CUdnn+PyTorch+Tensorflow】

【Anaconda+Pycharm+CUDA+CUdnn+PyTorch+Tensorflow】
课程来源

一、Anaconda

anaconda常用指令,更新查看添加下载源等

在这里插入图片描述
在这里插入图片描述

win+R cmd打开控制台
conda -V 查看版本以及是否安装成功
在这里插入图片描述
安装完成

二、Anaconda激活和创建环境

win+R cmd打开控制台

C:\Users\Administrator>activate
(base) C:\Users\Administrator>conda create  -n py39 python=3.9

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
py3.9 环境创建完成

按照提示 conda activate py39 激活py39环境 ,python 查看 python 版本

(base) C:\Users\Administrator>conda activate py39
(py39) C:\Users\Administrator>python
Python 3.9.11 (main, Mar 30 2022, 02:45:55) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>
Use exit() or Ctrl-Z plus Return to exit

按照提示 conda deactivate 回到base环境 ,python 查看 python 版本

(py39) C:\Users\Administrator>conda deactivate
(base) C:\Users\Administrator>python
Python 3.8.5 (default, Sep  3 2020, 21:29:08) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

删除虚拟环境:
删除环境:
使用命令conda remove -n your_env_name(虚拟环境名称) --all, 即可删除。

删除虚拟环境中的包:
使用命令conda remove --name $your_env_name $package_name(包名) 即可

三、PyCharm的安装和环境等

打开安装程序
安装地址自己选或者默认

在这里插入图片描述
重启电脑
打开PyCharm
在这里插入图片描述
新建项目并且使用我们建立的py39作为解释器
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
run一下demo

D:\Anaconda\envs\py39\python.exe C:/Users/Administrator/PycharmProjects/pythonProject/main.py
Hi, PyCharm
Process finished with exit code 0

安装完成

在setting->tools->找到终端,把power换成cmd的

四、CUDA安装

1、查看自己显卡驱动(这里我已经安装了cuda待会卸载)

Driver Version: 461.40

Win+R cmd 进入命令行
cd C:\Program Files\NVIDIA Corporation\NVSMI
nvidia-smi

在这里插入图片描述
2、根据显卡驱动的版本选择合适的cuda版本 官方
在这里插入图片描述
3、cuda版本下载 官方
在这里插入图片描述
4、安装
在这里插入图片描述
在这里插入图片描述
新建一个文件夹用于管理cuda并且进行下一步安装
在这里插入图片描述
cuda development 和 cuda document 选择cuda1Sample的选cuda2 用于区分开

在这里插入图片描述

显示没有VS的环境,不要紧 ,我们继续安装
在这里插入图片描述
在这里插入图片描述
很多东西没有,也不要紧,安装结束
在这里插入图片描述
查看是否安装完成
在这里插入图片描述

(base) C:\Users\Administrator>nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Mon_Nov_30_19:15:10_Pacific_Standard_Time_2020
Cuda compilation tools, release 11.2, V11.2.67
Build cuda_11.2.r11.2/compiler.29373293_0

查看环境变量
在这里插入图片描述
还有path里面
在这里插入图片描述
重启电脑,安装完成

五,cudnn神经网络加速库的配置

下载链接 可能要注册一下,用q邮箱就可以
跟cuda版本对应
在这里插入图片描述
在这里插入图片描述
配置完成

六、安装pytorch

步骤其实就是:打开新建的python环境,然后在官网找到你的cuda版本对应能用的pytorch版本,然后直接用官网的那个命令conda install去安装就好了;可能会提醒你要update你的conda,按照提示的步骤走就好了。

Microsoft Windows [版本 10.0.19042.1586]
(c) Microsoft Corporation。保留所有权利。

C:\Users\Administrator>conda activate py39

(py39) C:\Users\Administrator>conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.2  -c pytorch -c conda-forge

在这里插入图片描述

下载得很慢 方法

2022/4/3 但是我试过几个办法之后 就出很多问题 在solving environment这一步failed
所以我换成pip安装了

pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html

2022/4/4 还是失败

我的解决办法是:把cuda、Anaconda卸载,安装cuda10.1 ,重装Anaconda,然后重新走一遍。最后成功,只是安装很慢,等就完事了。
附上测试代码

!!!!!!注意测试代码的时候要把pycharm的项目解释器换成你安装所在的那个python环境!!!!!!
在这里插入图片描述
在这里插入图片描述

import torch
a = torch.cuda.is_available()
print(a)
ngpu= 1
device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu")
print(device)
print(torch.cuda.get_device_name(0))
print(torch.rand(3,3).cuda())

七、TensorFlow安装

新建一个python环境

C:\Users\Administrator>activate
(base) C:\Users\Administrator>conda create  -n tf python=3.9

进入环境

(base) C:\Users\Administrator>conda activate tf
(tf) C:\Users\Administrator>pip install tensorflow_gpu==2.3.0 -i https://pypi.douban.com/simple --trusted-host pypi.douban.com

(提示你版本找不到的话,就按照提示安装更高的版本)

测试代码;

import tensorflow as tf

#查看tensorflow版本
print(tf.__version__)

print('GPU', tf.test.is_gpu_available())

a = tf.constant(2.0)
b = tf.constant(4.0)
print(a + b)

成功显示:
在这里插入图片描述

至此,深度学习pytorch和TensorFlow都已经配置完成

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值