pandas_3 分组
import numpy as np
import pandas as pd
一、分组模式及其对象
1. 分组的一般模式_df.groupby(分组依据)[数据来源].使用操作
分组操作在日常生活中使用极其广泛,例如:
- 依据 性 别 \color{#FF0000}{性别} 性别分组,统计全国人口 寿 命 \color{#00FF00}{寿命} 寿命的 平 均 值 \color{#0000FF}{平均值} 平均值
- 依据 季 节 \color{#FF0000}{季节} 季节分组,对每一个季节的 温 度 \color{#00FF00}{温度} 温度进行 组 内 标 准 化 \color{#0000FF}{组内标准化} 组内标准化
- 依据 班 级 \color{#FF0000}{班级} 班级筛选出组内 数 学 分 数 \color{#00FF00}{数学分数} 数学分数的 平 均 值 超 过 80 分 的 班 级 \color{#0000FF}{平均值超过80分的班级} 平均值超过80分的班级
从上述的几个例子中不难看出,想要实现分组操作,必须明确三个要素: 分 组 依 据 \color{#FF0000}{分组依据} 分组依据、 数 据 来 源 \color{#00FF00}{数据来源} 数据来源、 操 作 及 其 返 回 结 果 \color{#0000FF}{操作及其返回结果} 操作及其返回结果。同时从充分性的角度来说,如果明确了这三方面,就能确定一个分组操作,从而分组代码的一般模式即:
df.groupby(分组依据)[数据来源].使用操作
例如第一个例子中的代码就应该如下:
df.groupby('Gender')['Longevity'].mean()
现在返回到学生体测的数据集上,如果想要按照性别统计身高中位数,就可以如下写出:
df = pd.read_csv('../data/learn_pandas.csv')
df.groupby('Gender')['Height'].median()
# Gender
# Female 159.6
# Male 173.4
# Name: Height, dtype: float64
2. 分组依据的本质
上述例子是以单一维度进行分组的,比如根据性别;根据多个维度进行分组,需在groupby
中传入相应列名构成的列表即可。
例如,现希望根据学校和性别进行分组,统计身高的均值就可以如下写出:
df.groupby(['School', 'Gender'])['Height'].mean()
School Gender
Fudan University Female 158.776923
Male 174.212500
Peking University Female 158.666667
Male 172.030000
Shanghai Jiao Tong University Female 159.122500
Male 176.760000
Tsinghua University Female 159.753333
Male 171.638889
Name: Height, dtype: float64
目前为止,groupby
的分组依据都是直接可以从列中按照名字获取的,那如果希望通过一定的复杂逻辑来分组,例如根据学生体重是否超过总体均值来分组,同样还是计算身高的均值。
首先应该先写出分组条件:
condition = df.Weight > df.Weight.mean()
然后将其传入groupby
中:
df.groupby(condition)['Height'].mean()
Weight
False 159.034646
True 172.705357
Name: Height, dtype: float64
从索引可以看出,其实最后产生的结果就是按照条件列表中元素的值(此处是True
和False
)来分组,下面用随机传入字母序列来验证这一想法:
item = np.random.choice(list('abc'), df.shape[0]) # df.shape[0] 返回行数
df.groupby(item)['Height'].mean()
a 163.094828
b 163.874603
c 162.666129
Name: Height, dtype: float64
此处的索引就是原先item中的元素,如果传入多个序列进入groupby
,那么最后分组的依据就是这两个序列对应行的唯一组合:
df.groupby([condition, item])['Height'].mean()
Weight
False a 159.334146
b 159.257143
c 158.543182
True a 172.164706
b 173.109524
c 172.744444
Name: Height, dtype: float64
由此可以看出,之前传入列名只是一种简便的记号,事实上等价于传入的是一个或多个列,最后分组的依据来自于数据来源组合的unique值,通过drop_duplicates
就能知道具体的组类别:
df[['School', 'Gender']].drop_duplicates()
School | Gender | |
---|---|---|
0 | Shanghai Jiao Tong University | Female |
1 | Peking University | Male |
2 | Shanghai Jiao Tong University | Male |
3 | Fudan University | Female |
4 | Fudan University | Male |
5 | Tsinghua University | Female |
9 | Peking University | Female |
16 | Tsinghua University | Male |
df.groupby([df['School'], df['Gender']])['Height'].mean()
School Gender
Fudan University Female 158.776923
Male 174.212500
Peking University Female 158.666667
Male 172.030000
Shanghai Jiao Tong University Female 159.122500
Male 176.760000
Tsinghua University Female 159.753333
Male 171.638889
Name: Height, dtype: float64
3. Groupby对象
分组操作调用的方法是来自于pandas
中的groupby
对象,这个对象上定义了许多方法,也具有一些方便的属性。
gb = df.groupby(['School', 'Grade'])
通过ngroups
属性,可以得到分组个数:
gb.ngroups
# 16
通过groups
属性,可以返回从
组
名
\color{#FF0000}{组名}
组名映射到
组
索
引
列
表
\color{#FF0000}{组索引列表}
组索引列表的字典:
res = gb.groups
res.keys() # 字典的值由于是索引,元素个数过多,此处只展示字典的键
dict_keys([('Fudan University', 'Freshman'), ('Fudan University', 'Junior'), ('Fudan University', 'Senior'), ('Fudan University', 'Sophomore'), ('Peking University', 'Freshman'), ('Peking University', 'Junior'), ('Peking University', 'Senior'), ('Peking University', 'Sophomore'), ('Shanghai Jiao Tong University', 'Freshman'), ('Shanghai Jiao Tong University', 'Junior'), ('Shanghai Jiao Tong University', 'Senior'), ('Shanghai Jiao Tong University', 'Sophomore'), ('Tsinghua University', 'Freshman'), ('Tsinghua University', 'Junior'), ('Tsinghua University', 'Senior'), ('Tsinghua University', 'Sophomore')])
通过size
属性,可以得到每个组的元素个数:
(注意区分:当size
作为DataFrame
的属性时,返回的是表长乘以表宽的大小)
gb.size()
School Grade
Fudan University Freshman 9
Junior 12
Senior 11
Sophomore 8
Peking University Freshman 13
Junior 8
Senior 8
Sophomore 5
Shanghai Jiao Tong University Freshman 13
Junior 17
Senior 22
Sophomore 5
Tsinghua University Freshman 17
Junior 22
Senior 14
Sophomore 16
dtype: int64
通过get_group
方法可以直接获取所在组对应的行,此时必须知道组的具体名字:
gb.get_group(('Fudan University', 'Freshman'))
School | Grade | Name | Gender | Height | Weight | Transfer | Test_Number | Test_Date | Time_Record | |
---|---|---|---|---|---|---|---|---|---|---|
15 | Fudan University | Freshman | Changqiang Yang | Female | 156.0 | 49.0 | N | 3 | 2020/1/1 | 0:05:25 |
28 | Fudan University | Freshman | Gaoqiang Qin | Female | 170.2 | 63.0 | N | 2 | 2020/1/7 | 0:05:24 |
63 | Fudan University | Freshman | Gaofeng Zhao | Female | 152.2 | 43.0 | N | 2 | 2019/10/31 | 0:04:00 |
70 | Fudan University | Freshman | Yanquan Wang | Female | 163.5 | 55.0 | N | 1 | 2019/11/19 | 0:04:07 |
73 | Fudan University | Freshman | Feng Wang | Male | 176.3 | 74.0 | N | 1 | 2019/9/26 | 0:03:31 |
105 | Fudan University | Freshman | Qiang Shi | Female | 164.5 | 52.0 | N | 1 | 2019/12/11 | 0:04:23 |
108 | Fudan University | Freshman | Yanqiang Xu | Female | 152.4 | 38.0 | N | 1 | 2019/12/8 | 0:05:03 |
157 | Fudan University | Freshman | Xiaoli Lv | Female | 152.5 | 45.0 | N | 2 | 2019/9/11 | 0:04:17 |
186 | Fudan University | Freshman | Yanjuan Zhao | Female | NaN | 53.0 | N | 2 | 2019/10/9 | 0:04:21 |
先前的mean
、median
都是groupby
对象上的方法,这些函数和许多其他函数的操作具有高度相似性,将在后续介绍。
二、分组的三大操作
重新回到开头举的三个例子,会发现这三种类型分组返回的数据型态并不一样:
- 第一个例子中,每一个组返回一个标量值,可以是平均值、中位数、组容量
size
等 - 第二个例子中,做了原序列的标准化处理,也就是说每组返回的是一个
Series
类型 - 第三个例子中,既不是标量也不是序列,返回的整个组所在行的本身,即返回了
DataFrame
类型
由此,引申出分组的三大操作:聚合、变换和过滤,分别对应了三个例子的操作,下面就要分别介绍相应的agg
、transform
和filter
函数及其操作。
1.聚合
1. 内置聚合函数
直接定义在groupby对象的聚合函数,应当优先考虑**。根据返回标量值的原则,包括如下函数:max/min/mean/median(算术中位数)/count(数量)/all(是否所有元素都为真)/any(是否至少一个元素为真)/idxmax(最大值索引)/idxmin/mad(平均绝对偏差)/nunique(唯一值的数量)/skew(偏度)/quantile(分位数)/sum/std(无偏(分母为n-1)标准差/var(方差)/sem(均值的标准误差)/size/prod(积)
。可以使用describe
方法进行统计信息汇总
gb = df.groupby('Gender')['Height']
gb.idxmin()
Gender
Female 143
Male 199
Name: Height, dtype: int64
gb.quantile(0.95)
Gender
Female 166.8
Male 185.9
Name: Height, dtype: float64
这些聚合函数当传入的数据来源包含多个列时,将按照列进行迭代计算:
gb = df.groupby('Gender')[['Height', 'Weight']]
gb.max()
Height | Weight | |
---|---|---|
Gender | ||
Female | 170.2 | 63.0 |
Male | 193.9 | 89.0 |
2. agg方法
虽然在groupby
对象上定义了许多方便的函数,但仍然有以下不便之处:
- 无法同时使用多个函数
- 无法对特定的列使用特定的聚合函数
- 无法使用自定义的聚合函数
- 无法直接对结果的列名在聚合前进行自定义命名
下面说明如何通过agg
函数解决这四类问题:
1.同时使用多个函数_列表
当使用多个聚合函数时,需要用列表的形式把内置聚合函数对应的字符串传入,先前提到的所有字符串都是合法的。
gb.agg(['sum', 'idxmax', 'skew'])
Height | Weight | |||||
---|---|---|---|---|---|---|
sum | idxmax | skew | sum | idxmax | skew | |
Gender | ||||||
Female | 21014.0 | 28 | -0.219253 | 6469.0 | 28 | -0.268482 |
Male | 8854.9 | 193 | 0.437535 | 3929.0 | 2 | -0.332393 |
从结果看,此时的列索引为多级索引,第一层为数据源,第二层为使用的聚合方法,分别逐一对列使用聚合,因此结果为6列。
2.对特定的列使用特定的聚合函数_字典
对于方法和列的特殊对应,可以通过构造字典传入agg
中实现,其中字典以列名为键,以聚合字符串或字符串列表为值。
gb.agg({'Height':['mean','max'], 'Weight':'count'})
Height | Weight | ||
---|---|---|---|
mean | max | count | |
Gender | |||
Female | 159.19697 | 170.2 | 135 |
Male | 173.62549 | 193.9 | 54 |
3.使用自定义函数
在agg
中可以使用具体的自定义函数,
需
要
注
意
传
入
函
数
的
参
数
是
之
前
数
据
源
中
的
列
,
逐
列
进
行
计
算
\color{#FF0000}{需要注意传入函数的参数是之前数据源中的列,逐列进行计算}
需要注意传入函数的参数是之前数据源中的列,逐列进行计算。下面分组计算身高和体重的极差:
gb.agg(lambda x: x.mean()-x.min())
Height | Weight | |
---|---|---|
Gender | ||
Female | 13.79697 | 13.918519 |
Male | 17.92549 | 21.759259 |
由于传入的是序列,因此序列上的方法和属性都是可以在函数中使用的,只需保证返回值是标量即可。下面的例子是指,如果组的指标均值,超过该指标的总体均值,返回High,否则返回Low。
def my_func(s):
res = 'High'
if s.mean() <= df[s.name].mean():
res = 'Low'
return res
gb.agg(my_func)
Height | Weight | |
---|---|---|
Gender | ||
Female | Low | Low |
Male | High | High |
4.聚合结果重命名_元组
如果想要对聚合结果的列名进行重命名,只需要将上述函数的位置改写成元组,元组的第一个元素为新的名字,第二个位置为原来的函数,包括聚合字符串和自定义函数,现举若干例子说明:
gb.agg([('range', lambda x: x.max()-x.min()), ('my_sum', 'sum')])
Height | Weight | |||
---|---|---|---|---|
range | my_sum | range | my_sum | |
Gender | ||||
Female | 24.8 | 21014.0 | 29.0 | 6469.0 |
Male | 38.2 | 8854.9 | 38.0 | 3929.0 |
gb.agg({'Height': [('my_func', my_func), 'sum'], 'Weight': lambda x:x.max()})
Height | Weight | ||
---|---|---|---|
my_func | sum | <lambda> | |
Gender | |||
Female | Low | 21014.0 | 63.0 |
Male | High | 8854.9 | 89.0 |
另外需要注意,对一个或者多个列使用单个聚合的时候,重命名需要加方括号,否则就不知道是新的名字还是手误输错的内置函数字符串:
gb.agg([('my_sum', 'sum')])
Height | Weight | |
---|---|---|
my_sum | my_sum | |
Gender | ||
Female | 21014.0 | 6469.0 |
Male | 8854.9 | 3929.0 |
gb.agg({'Height': [('my_func', my_func), 'sum'], 'Weight': [('range', lambda x:x.max())]})
Height | Weight | ||
---|---|---|---|
my_func | sum | range | |
Gender | |||
Female | Low | 21014.0 | 63.0 |
Male | High | 8854.9 | 89.0 |
2.变换
1.内置变换函数
累计函数
变换函数的返回值为同长度的序列,最常用的内置变换函数是累计函数:cumcount/cumsum/cumprod/cummax/cummin
,它们的使用方式和聚合函数类似,只不过完成的是组内累计操作。
gb.cummax().head() # 当前元素和前一个元素之间的较大者
Height | Weight | |
---|---|---|
0 | 158.9 | 46.0 |
1 | 166.5 | 70.0 |
2 | 188.9 | 89.0 |
3 | NaN | 46.0 |
4 | 188.9 | 89.0 |
rank函数
在groupby对象中,rank方法也是一个实用的变换函数(排序):
1.1按照年龄进行排序
df['rank'] = df['age'].rank()
df['rank_mean'] = df['age'].rank(method='average')
df['rank_min'] = df['age'].rank(method='min')
df['rank_max'] = df['age'].rank(method='max')
df['rank_first'] = df['age'].rank(method='first')
print(df)
1.2根据不同的性别对年龄进行排序
df['rank_g'] = df.groupby(['gender'])['age'].rank()
print(df)
rank()函数参数设置:
1.method : {‘average’, ‘min’, ‘max’, ‘first’, ‘dense’}主要用于 排序时存在相同值时 参数设置。
默认为average平均值:年龄为32的数值,排序应该为8,9取平均值则为8.5
min:排序中最小值,年龄排序中取值为8
max:排序中最大值,年龄排序中取值9
first:同样数值按照值出现的前后进行排序 5号性别为男的年龄排序为8,7号性别为女的排序为9
dense: like ‘min’, but rank always increases by 1 between groups 排序时当值相同时,相同的值为同一排名类似min值排序,后续值排名在此排名基础上加一
2.na_option : {‘keep’, ‘top’, ‘bottom’}当排序数据中存在空值时。
默认为keep: 默认空值不参与排序
top: 默认为升序时从空值为最小值排序
bottom: 默认升序时 空值为最大值排序
df['rank'] = df['age'].rank(method='first')
df['rank_k'] = df['age'].rank(method='first',na_option='keep')
df['rank_t'] = df['age'].rank(method='first',na_option='top')
df['rank_b'] = df['age'].rank(method='first',na_option='bottom')
print(df)
————————————————
rank()函数部分转载于CSDN博主「D_grey」的原创文章
原文链接:https://blog.csdn.net/baidu_38409988/article/details/102668006
填充类滑窗类变换函数
在groupby
对象上还定义了填充类和滑窗类的变换函数,这些函数的一般形式将会在后续文章中进行讨论,此处略过。
2.transform
方法
当用自定义变换时需要使用transform
方法,被调用的自定义函数,
其
传
入
值
为
数
据
源
的
序
列
\color{#FF0000}{其传入值为数据源的序列}
其传入值为数据源的序列,与agg
的传入类型是一致的,其最后的返回结果是行列索引与数据源一致的DataFrame
。
现对身高和体重进行分组标准化,即减去组均值后除以组的标准差:
gb.transform(lambda x: (x-x.mean())/x.std()).head()
Height | Weight | |
---|---|---|
0 | -0.058760 | -0.354888 |
1 | -1.010925 | -0.355000 |
2 | 2.167063 | 2.089498 |
3 | NaN | -1.279789 |
4 | 0.053133 | 0.159631 |
前面提到了transform
只能返回同长度的序列,但事实上还可以返回一个标量,这会使得结果被广播到其所在的整个组,这种
标
量
广
播
\color{#FF0000}{标量广播}
标量广播的技巧在特征工程中是非常常见的。例如,构造两列新特征来分别表示样本所在性别组的身高均值和体重均值:
gb.transform('mean').head() # 传入返回标量的函数也是可以的
Height | Weight | |
---|---|---|
0 | 159.19697 | 47.918519 |
1 | 173.62549 | 72.759259 |
2 | 173.62549 | 72.759259 |
3 | 159.19697 | 47.918519 |
4 | 173.62549 | 72.759259 |
3. 过滤
索引和过滤区别:
过滤在分组中是对于组的过滤;而索引是对于行的过滤,即对于行的筛选。
组过滤作为行过滤的推广,指的是如果对一个组的全体所在行进行统计的结果返回True
则会被保留,False
则该组会被过滤,最后把所有未被过滤的组其对应的所在行拼接起来作为DataFrame
返回。
在groupby
对象中,定义了filter
方法进行组的筛选,其中自定义函数的输入参数为数据源构成的DataFrame
本身,在之前例子中定义的groupby
对象中,传入的就是df[['Height', 'Weight']]
,因此所有表方法和属性都可以在自定义函数中相应地使用,同时只需保证自定义函数的返回为布尔值即可。
例如,在原表中通过过滤得到所有容量大于100的组:
gb.filter(lambda x: x.shape[0] > 100).head()
Height | Weight | |
---|---|---|
0 | 158.9 | 46.0 |
3 | NaN | 41.0 |
5 | 158.0 | 51.0 |
6 | 162.5 | 52.0 |
7 | 161.9 | 50.0 |
三、跨列分组
1. apply的引入
前面介绍了三大分组操作,但事实上还有一种常见的分组场景,无法用前面介绍的任何一种方法处理,例如现在如下定义身体质量指数BMI:
B
M
I
=
W
e
i
g
h
t
H
e
i
g
h
t
2
{\rm BMI} = {\rm\frac{Weight}{Height^2}}
BMI=Height2Weight
其中体重和身高的单位分别为千克和米,需要分组计算组BMI的均值。
首先,这显然不是过滤操作,因此filter
不符合要求;其次,返回的均值是标量而不是序列,因此transform
不符合要求;最后,似乎使用agg
函数能够处理,但是之前强调过聚合函数是逐列处理的,而不能够
多
列
数
据
同
时
处
理
\color{#FF0000}{多列数据同时处理}
多列数据同时处理。由此,引出了apply
函数来解决这一问题。
2. apply的使用
在设计上,apply
的自定义函数传入参数与filter
完全一致,只不过后者只允许返回布尔值。现如下解决上述计算问题:
def BMI(x):
Height = x['Height']/100
Weight = x['Weight']
BMI_value = Weight/Height**2
return BMI_value.mean()
gb.apply(BMI)
Gender
Female 18.860930
Male 24.318654
dtype: float64
apply
方法可以返回标量、一维Series
和二维DataFrame
,但它们产生的数据框维数和多级索引的层数应当如何变化?
【a】标量情况:结果得到的是 Series
,索引与 agg
的结果一致
gb = df.groupby(['Gender','Test_Number'])[['Height','Weight']]
gb.apply(lambda x: 0)
Gender Test_Number
Female 1 0
2 0
3 0
Male 1 0
2 0
3 0
dtype: int64
gb.apply(lambda x: [0, 0]) # 虽然是列表,但是作为返回值仍然看作标量
Gender Test_Number
Female 1 [0, 0]
2 [0, 0]
3 [0, 0]
Male 1 [0, 0]
2 [0, 0]
3 [0, 0]
dtype: object
【b】Series
情况:得到的是DataFrame
,行索引与标量情况一致,列索引为Series
的索引
gb.apply(lambda x: pd.Series([0,0],index=['a','b']))
a | b | ||
---|---|---|---|
Gender | Test_Number | ||
Female | 1 | 0 | 0 |
2 | 0 | 0 | |
3 | 0 | 0 | |
Male | 1 | 0 | 0 |
2 | 0 | 0 | |
3 | 0 | 0 |
【c】DataFrame
情况:得到的是DataFrame
,行索引最内层在每个组原先agg
的结果索引上,再加一层返回的DataFrame
行索引,同时分组结果DataFrame
的列索引和返回的DataFrame
列索引一致。
gb.apply(lambda x: pd.DataFrame(np.ones((2,2)), index = ['a','b'], columns=pd.Index([('w','x'),('y','z')])))
w | y | |||
---|---|---|---|---|
x | z | |||
Gender | Test_Number | |||
Female | 1 | a | 1.0 | 1.0 |
b | 1.0 | 1.0 | ||
2 | a | 1.0 | 1.0 | |
b | 1.0 | 1.0 | ||
3 | a | 1.0 | 1.0 | |
b | 1.0 | 1.0 | ||
Male | 1 | a | 1.0 | 1.0 |
b | 1.0 | 1.0 | ||
2 | a | 1.0 | 1.0 | |
b | 1.0 | 1.0 | ||
3 | a | 1.0 | 1.0 | |
b | 1.0 | 1.0 |
注意:apply
函数的灵活性是以牺牲一定性能为代价换得的,除非需要使用跨列处理的分组处理,否则应当使用其他专门设计的groupby
对象方法,否则在性能上会存在较大的差距。同时,在使用聚合函数和变换函数时,也应当优先使用内置函数,它们经过了高度的性能优化,一般而言在速度上都会快于用自定义函数来实现。