机器学习_7决策树


决策树学习算法包括3部分:特征选择、树的生成和树的剪枝。
决策树建立的关键是分类依据的属性的选择
,根据不同目标函数,建立决策树主要有三种算法: ID3、C4.5、CART

1.决策树原理

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

2.属性选择的度量

决策树建立的关键是分类依据的属性的选择,根据不同目标函数,建立决策树主要有三种算法:ID3、C4.5、CART

三种算法适用对比:

在这里插入图片描述
**样本量上:**小样本建议C4.5,需对数据集进行多次扫描排序,处理成本耗时较高;大样本建议CART,小样本下泛化误差大。

1.ID3算法

ID3算法核心是信息熵,期望的信息越小,信息熵越大,样本纯度越低。
信息增益作为衡量标准,从而对数据进行归纳分类。计算每个属性的信息增益,选取具有最高增益的属性作为给定的测试属性,即放在决策树的顶部。
在这里插入图片描述
在这里插入图片描述

信息熵、条件熵、信息增益

在这里插入图片描述
这里,类别K=2,“是”和“否”。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.C4.5算法

C4.5用信息增益率选择属性,在决策树构造过程中有剪枝操作,对非离散数据、不完整数据也能处理。是对ID3算法的改进。

信息增益率

在这里插入图片描述

剪枝

通过剪枝处理去掉一些分支来降低过拟合的风险。剪枝的基本策略有“预剪枝”和“后剪枝”。

预剪枝:
在这里插入图片描述
后剪枝:
更常用,是在已经生成的决策树上进行剪枝,从而得到简化版的剪枝决策树。
在这里插入图片描述
剪枝完成后的决策树:
在这里插入图片描述
后剪枝优缺点:
后剪枝决策树通常比预剪枝决策树保留了更多分支。后剪枝欠拟合风险更小,泛化能力优于预剪枝决策树。
在这里插入图片描述

3.CART算法

CART算法用的二叉树。
分类:基尼指数选择属性;回归:均方差选择属性。
在这里插入图片描述

基尼指数——分类

连续特征处理:
在这里插入图片描述
离散特征处理:
在这里插入图片描述
基尼指数:
在这里插入图片描述

均方差——回归

在这里插入图片描述
在这里插入图片描述

CART剪枝

在这里插入图片描述
在这里插入图片描述
信息增益 最大、信息增益比 最大 、基尼指数 最小 ——特征选择的准则。

3.代码实现

计算信息增益并判断最大值对应的特征

import numpy as np
import pandas as pd
import math
from math import log

# 创建数据
def create_data():
    datasets = [['青年', '否', '否', '一般', '否'],
               ['青年', '否', '否', '好', '否'],
               ['青年', '是', '否', '好', '是'],
               ['青年', '是', '是', '一般', '是'],
               ['青年', '否', '否', '一般', '否'],
               ['中年', '否', '否', '一般', '否'],
               ['中年', '否', '否', '好', '否'],
               ['中年', '是', '是', '好', '是'],
               ['中年', '否', '是', '非常好', '是'],
               ['中年', '否', '是', '非常好', '是'],
               ['老年', '否', '是', '非常好', '是'],
               ['老年', '否', '是', '好', '是'],
               ['老年', '是', '否', '好', '是'],
               ['老年', '是', '否', '非常好', '是'],
               ['老年', '否', '否', '一般', '否'],
               ]
    labels = ['年龄', '有工作', '有自己的房子', '信贷情况', '类别']
    # 返回数据集和每个维度的名称
    return datasets, labels

datasets, labels = create_data()
train_data = pd.DataFrame(datasets, columns=labels)
print(train_data)
#     年龄 有工作 有自己的房子 信贷情况 类别
# 0   青年   否      否   一般  否
# 1   青年   否      否    好  否
# 2   青年   是      否    好  是
# 3   青年   是      是   一般  是
# 4   青年   否      否   一般  否
# 5   中年   否      否   一般  否
# 6   中年   否      否    好  否
# 7   中年   是      是    好  是
# 8   中年   否      是  非常好  是
# 9   中年   否      是  非常好  是
# 10  老年   否      是  非常好  是
# 11  老年   否      是    好  是
# 12  老年   是      否    好  是
# 13  老年   是      否  非常好  是
# 14  老年   否      否   一般  否

# 熵 
def calc_ent(datasets):
    data_length = len(datasets)
    label_count = {}
    for i in range(data_length):
        label = datasets[i][-1]
        if label not in label_count:
            label_count[label] = 0
        label_count[label] += 1
    ent = -sum([(p / data_length) * log(p / data_length, 2) for p in label_count.values()])
    return ent

# 条件熵
def cond_ent(datasets, axis=0):
    data_length = len(datasets)
    feature_sets = {}
    for i in range(data_length):
        feature = datasets[i][axis]
        if feature not in feature_sets:
            feature_sets[feature] = []
        feature_sets[feature].append(datasets[i])
    cond_ent = sum([(len(p) / data_length) * calc_ent(p) for p in feature_sets.values()])
    return cond_ent

print(calc_ent(datasets))
# 0.9709505944546686

# 信息增益
def info_gain(ent, cond_ent):
    return ent - cond_ent

def info_gain_train(datasets):
    count = len(datasets[0]) - 1
    ent = calc_ent(datasets)
    best_feature = []
    for c in range(count):
        c_info_gain = info_gain(ent, cond_ent(datasets, axis=c))
        best_feature.append((c, c_info_gain))
        print('特征({}) 的信息增益为: {:.3f}'.format(labels[c], c_info_gain))
    # 比较大小
    best_ = max(best_feature, key=lambda x: x[-1])
    return '特征({})的信息增益最大,选择为根节点特征'.format(labels[best_[0]])

print(info_gain_train(np.array(datasets)))
# 特征(年龄) 的信息增益为: 0.083
# 特征(有工作) 的信息增益为: 0.324
# 特征(有自己的房子) 的信息增益为: 0.420
# 特征(信贷情况) 的信息增益为: 0.363
# 特征(有自己的房子)的信息增益最大,选择为根节点特征

ID3算法生成决策树

# 定义节点类 二叉树
class Node:
    def __init__(self, root=True, label=None, feature_name=None, feature=None):
        self.root = root
        self.label = label
        self.feature_name = feature_name
        self.feature = feature
        self.tree = {}
        self.result = {'label:': self.label,'feature': self.feature,'tree': self.tree}

    def __repr__(self):
        return '{}'.format(self.result)

    def add_node(self, val, node):
        self.tree[val] = node

    def predict(self, features):
        if self.root is True:
            return self.label
        return self.tree[features[self.feature]].predict(features)


class DTree:
    def __init__(self, epsilon=0.1):
        self.epsilon = epsilon
        self._tree = {}

    # 熵
    @staticmethod
    def calc_ent(datasets):
        data_length = len(datasets)
        label_count = {}
        for i in range(data_length):
            label = datasets[i][-1]
            if label not in label_count:
                label_count[label] = 0
            label_count[label] += 1
        ent = -sum([(p / data_length) * log(p / data_length, 2) for p in label_count.values()])
        return ent

    # 经验条件熵
    def cond_ent(self, datasets, axis=0):
        data_length = len(datasets)
        feature_sets = {}
        for i in range(data_length):
            feature = datasets[i][axis]
            if feature not in feature_sets:
                feature_sets[feature] = []
            feature_sets[feature].append(datasets[i])
        cond_ent = sum([(len(p) / data_length) * self.calc_ent(p) for p in feature_sets.values()])
        return cond_ent

    # 信息增益
    @staticmethod
    def info_gain(ent, cond_ent):
        return ent - cond_ent

    def info_gain_train(self, datasets):
        count = len(datasets[0]) - 1
        ent = self.calc_ent(datasets)
        best_feature = []
        for c in range(count):
            c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=c))
            best_feature.append((c, c_info_gain))
        # 比较大小
        best_ = max(best_feature, key=lambda x: x[-1])
        return best_

    def train(self, train_data):
        """
        input:数据集D(DataFrame格式),特征集A,阈值eta
        output:决策树T
        """
        _, y_train, features = train_data.iloc[:, : -1], train_data.iloc[:,-1], train_data.columns[: -1]
        
        # 1,若D中实例属于同一类Ck,则T为单节点树,并将类Ck作为结点的类标记,返回T
        if len(y_train.value_counts()) == 1:
            return Node(root=True, label=y_train.iloc[0])
        # 2, 若A为空,则T为单节点树,将D中实例树最大的类Ck作为该节点的类标记,返回T
        if len(features) == 0:
            return Node(root=True,label=y_train.value_counts().sort_values(ascending=False).index[0])
        # 3,计算最大信息增益,Ag为信息增益最大的特征
        max_feature, max_info_gain = self.info_gain_train(np.array(train_data))
        max_feature_name = features[max_feature]
        # 4,Ag的信息增益小于阈值eta,则置T为单节点树,并将D中是实例数最大的类Ck作为该节点的类标记,返回T
        if max_info_gain < self.epsilon:
            return Node(
                root=True,
                label=y_train.value_counts().sort_values(ascending=False).index[0])
        # 5,构建Ag子集
        node_tree = Node(root=False, feature_name=max_feature_name, feature=max_feature)

        feature_list = train_data[max_feature_name].value_counts().index
        for f in feature_list:
            sub_train_df = train_data.loc[train_data[max_feature_name] ==f].drop([max_feature_name], axis=1)

            # 6, 递归生成树
            sub_tree = self.train(sub_train_df)
            node_tree.add_node(f, sub_tree)

        # pprint.pprint(node_tree.tree)
        return node_tree

    def fit(self, train_data):
        self._tree = self.train(train_data)
        return self._tree

    def predict(self, X_test):
        return self._tree.predict(X_test)
datasets, labels = create_data()
data_df = pd.DataFrame(datasets, columns=labels)
dt = DTree()
tree = dt.fit(data_df)
print(tree)
# {'label:': None, 'feature': 2, 'tree': {'否': {'label:': None, 'feature': 1, 'tree': {'否': {'label:': '否', 'feature': None, 'tree': {}}, '是': {'label:': '是', 'feature': None, 'tree': {}}}}, '是': {'label:': '是', 'feature': None, 'tree': {}}}}

print(dt.predict(['老年', '否', '否', '一般']))
# 否

Scikit-learn实现实例

import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from collections import Counter

# 加载Iris数据集
def create_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
    data = np.array(df.iloc[:100, [0, 1, -1]])
    # print(data)
    return data[:, :2], data[:, -1],iris.feature_names[0:2]

X, y,feature_name= create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

决策树分类

from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_graphviz
import graphviz
from sklearn import tree

clf = DecisionTreeClassifier()
clf.fit(X_train, y_train,)

print(clf.score(X_test, y_test))
# 0.9666666666666667

# 一旦经过训练,就可以用 plot_tree函数绘制树:
print(tree.plot_tree(clf) )
[Text(275.55555555555554, 323.4, 'X[0] <= 5.45\ngini = 0.493\nsamples = 70\nvalue = [39, 31]'), Text(165.33333333333334, 230.99999999999997, 'X[1] <= 2.7\ngini = 0.105\nsamples = 36\nvalue = [34, 2]'), Text(110.22222222222223, 138.6, 'X[0] <= 4.75\ngini = 0.444\nsamples = 3\nvalue = [1, 2]'), Text(55.111111111111114, 46.19999999999999, 'gini = 0.0\nsamples = 1\nvalue = [1, 0]'), Text(165.33333333333334, 46.19999999999999, 'gini = 0.0\nsamples = 2\nvalue = [0, 2]'), Text(220.44444444444446, 138.6, 'gini = 0.0\nsamples = 33\nvalue = [33, 0]'), Text(385.7777777777778, 230.99999999999997, 'X[1] <= 3.45\ngini = 0.251\nsamples = 34\nvalue = [5, 29]'), Text(330.6666666666667, 138.6, 'gini = 0.0\nsamples = 29\nvalue = [0, 29]'), Text(440.8888888888889, 138.6, 'gini = 0.0\nsamples = 5\nvalue = [5, 0]')]

在这里插入图片描述

导出树

tree_pic = export_graphviz(clf, out_file="mytree.pdf")
with open('mytree.pdf') as f:
    dot_graph = f.read()

print(graphviz.Source(dot_graph))

或者,还可以使用函数 export_text以文本格式导出树。此方法不需要安装外部库,而且更紧凑:

from sklearn.tree import export_text
r = export_text(clf,feature_name)

print(r)
|--- sepal length (cm) <= 5.45
|   |--- sepal width (cm) <= 2.80
|   |   |--- sepal length (cm) <= 4.70
|   |   |   |--- class: 0.0
|   |   |--- sepal length (cm) >  4.70
|   |   |   |--- class: 1.0
|   |--- sepal width (cm) >  2.80
|   |   |--- sepal length (cm) <= 5.30
|   |   |   |--- class: 0.0
|   |   |--- sepal length (cm) >  5.30
|   |   |   |--- sepal width (cm) <= 3.20
|   |   |   |   |--- class: 1.0
|   |   |   |--- sepal width (cm) >  3.20
|   |   |   |   |--- class: 0.0
|--- sepal length (cm) >  5.45
|   |--- sepal width (cm) <= 3.35
|   |   |--- class: 1.0
|   |--- sepal width (cm) >  3.35
|   |   |--- class: 0.0

F:\anaconda\lib\site-packages\sklearn\utils\validation.py:70: FutureWarning: Pass feature_names=['sepal length (cm)', 'sepal width (cm)'] as keyword args. From version 1.0 (renaming of 0.25) passing these as positional arguments will result in an error
  warnings.warn(f"Pass {args_msg} as keyword args. From version "

决策树回归

import numpy as np
from sklearn.tree import DecisionTreeRegressor
import matplotlib.pyplot as plt

# Create a random dataset  
# 先创建一组随机的,分布在0~5上的横坐标轴的取值(x),
# 然后将这一组值放到sin函数中去生成纵坐标的值(y),接着再到y上去添加噪声
rng = np.random.RandomState(1)
X = np.sort(5 * rng.rand(80, 1), axis=0)
y = np.sin(X).ravel()
y[::5] += 3 * (0.5 - rng.rand(16))

# Fit regression model
regr_1 = DecisionTreeRegressor(max_depth=2)
regr_2 = DecisionTreeRegressor(max_depth=5)
regr_1.fit(X, y)
regr_2.fit(X, y)

# Predict
X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]
y_1 = regr_1.predict(X_test)
y_2 = regr_2.predict(X_test)

# Plot the results
plt.figure()
plt.scatter(X, y, s=20, edgecolor="black", c="darkorange", label="data")
plt.plot(X_test, y_1, color="cornflowerblue", label="max_depth=2", linewidth=2)
plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=5", linewidth=2)
plt.xlabel("data")
plt.ylabel("target")
plt.title("Decision Tree Regression")
plt.legend()
plt.show()

在这里插入图片描述

Scikit-learn 的决策树函数参数

DecisionTreeClassifier(criterion="gini", splitter="best", max_depth=None, min_samples_split=2, 
min_samples_leaf=1, min_weight_fraction_leaf=0., max_features=None,random_state=None, max_leaf_nodes=None,
min_impurity_decrease=0., min_impurity_split=None,class_weight=None, presort=False)

参数介绍:
1.criterion:string, optional (default=“gini”)
(1).criterion=‘gini’,分裂节点时评价准则是Gini基尼指数。
(2).criterion=‘entropy’,分裂节点时的评价指标是信息增益。

2.max_depth:int or None, optional (default=None)。指定树的最大深度。
如果为None,表示树的深度不限。直到所有的叶子节点都是纯净的,即叶子节点
中所有的样本点都属于同一个类别。或者每个叶子节点包含的样本数小于min_samples_split。

3.splitter:string, optional (default=“best”)。指定分裂节点时的策略。
(1).splitter=‘best’,表示选择最优的分裂策略。
(2).splitter=‘random’,表示选择最好的随机切分策略。

4.min_samples_split:int, float, optional (default=2)。表示分裂一个内部节点需要的做少样本数。
(1).如果为整数,则min_samples_split就是最少样本数。
(2).如果为浮点数(0到1之间),则每次分裂最少样本数为ceil(min_samples_split * n_samples)

5.min_samples_leaf: int, float, optional (default=1)。指定每个叶子节点需要的最少样本数。
(1).如果为整数,则min_samples_split就是最少样本数。
(2).如果为浮点数(0到1之间),则每个叶子节点最少样本数为ceil(min_samples_leaf * n_samples)

6.min_weight_fraction_leaf:float, optional (default=0.)
指定叶子节点中样本的最小权重。

7.max_features:int, float, string or None, optional (default=None).
搜寻最佳划分的时候考虑的特征数量。
(1).如果为整数,每次分裂只考虑max_features个特征。
(2).如果为浮点数(0到1之间),每次切分只考虑int(max_features * n_features)个特征。
(3).如果为’auto’或者’sqrt’,则每次切分只考虑sqrt(n_features)个特征
(4).如果为’log2’,则每次切分只考虑log2(n_features)个特征。
(5).如果为None,则每次切分考虑n_features个特征。
(6).如果已经考虑了max_features个特征,但还是没有找到一个有效的切分,那么还会继续寻找
下一个特征,直到找到一个有效的切分为止。

8.random_state:int, RandomState instance or None, optional (default=None)
(1).如果为整数,则它指定了随机数生成器的种子。
(2).如果为RandomState实例,则指定了随机数生成器。
(3).如果为None,则使用默认的随机数生成器。

9.max_leaf_nodes: int or None, optional (default=None)。指定了叶子节点的最大数量。
(1).如果为None,叶子节点数量不限。
(2).如果为整数,则max_depth被忽略。

10.min_impurity_decrease:float, optional (default=0.)
如果节点的分裂导致不纯度的减少(分裂后样本比分裂前更加纯净)大于或等于min_impurity_decrease,则分裂该节点。
加权不纯度的减少量计算公式为:min_impurity_decrease=
N_t / N * (impurity - N_t_R / N_t * right_impurity - N_t_L / N_t * left_impurity)
其中,N是样本的总数,N_t是当前节点的样本数,N_t_L是分裂后左子节点的样本数, N_t_R是分裂后右子节点的样本数。impurity指当前节点的基尼指数,right_impurity指分裂后右子节点的基尼指数。left_impurity指分裂后左子节点的基尼指数。

11.min_impurity_split:float
树生长过程中早停止的阈值。如果当前节点的不纯度高于阈值,节点将分裂,否则它是叶子节点。
这个参数已经被弃用。用min_impurity_decrease代替了min_impurity_split。

12.class_weight:dict, list of dicts, “balanced” or None, default=None
类别权重的形式为{class_label: weight}
(1).如果没有给出每个类别的权重,则每个类别的权重都为1。
(2).如果class_weight=‘balanced’,则分类的权重与样本中每个类别出现的频率成反比。
计算公式为:n_samples / (n_classes * np.bincount(y))
(3).如果sample_weight提供了样本权重(由fit方法提供),则这些权重都会乘以sample_weight。

13.presort:bool, optional (default=False)
指定是否需要提前排序数据从而加速训练中寻找最优切分的过程。设置为True时,对于大数据集
会减慢总体的训练过程;但是对于一个小数据集或者设定了最大深度的情况下,会加速训练过程。

决策树-寻找最优参数

# 导入库
from sklearn.tree import DecisionTreeClassifier
from sklearn import datasets
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from sklearn.model_selection import GridSearchCV
from sklearn.tree import DecisionTreeRegressor
from sklearn import metrics

# 导入数据集
X = datasets.load_iris()  # 以全部字典形式返回,有data,target,target_names三个键
data = X.data
target = X.target
name = X.target_names
x, y = datasets.load_iris(return_X_y=True)  # 能一次性取前2个
print(x.shape, y.shape)
# (150, 4) (150,)

# 将数据集分为训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(x, y,test_size=0.2,random_state=100)

# 用GridSearchCV寻找最优参数(字典)
param = {'criterion': ['gini'],'max_depth': [30, 50, 60, 100],
'min_samples_leaf': [2, 3, 5, 10],'min_impurity_decrease': [0.1, 0.2, 0.5]}
grid = GridSearchCV(DecisionTreeClassifier(), param_grid=param, cv=6)
grid.fit(x_train, y_train)
print('最优分类器:', grid.best_params_, '最优分数:', grid.best_score_)  # 得到最优的参数和分值

# 最优分类器: {'criterion': 'gini', 'max_depth': 30, 'min_impurity_decrease': 0.2, 'min_samples_leaf': 10} 最优分数: 0.9416666666666665
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值