目录
一.决策树概述
1.1决策树概念
决策树(decision tree)是一种基本的分类与回归方法。决策树模型呈树形结构,在分类问题中,表示基于特征对实例进行分类的过程。它可以认为是if-then规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。
决策树是一种描述对实例进行分类的树形结构,其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,最后每个叶节点代表一种分类结果,本质是一颗由多个判断节点组成的树。分类决策树模型是一种树形结构。 决策树由结点和有向边组成。结点有两种类型:内部结点和叶节点。内部结点表示一个特征或属性,叶节点表示一个类。
1.2决策树实现步骤
决策树通常有三个步骤:特征选择、决策树的生成、决策树的修剪。
特征选择:从训练数据的特征中选择一个特征作为当前节点的分裂标准(特征选择的标准不同产生了不同的特征决策树算法)。
决策树生成:根据所选特征评估标准,从上至下递归地生成子节点,直到数据集不可分则停止决策树停止声场。
决策树剪枝:决策树容易过拟合,需要剪枝来缩小树的结构和规模(包括预剪枝和后剪枝)。
算法基本流程:
将所有数据放在根节点
选择一个最优的特征,根据这个特征将训练数据分割成子集,使得各个子集在当前条件下有一个最好的分类
递归下去,直到所有数据子集都被基本正确分类、或者没有合适的特征为止
递归返回的三个条件:
(1)当前结点点包含的样本全部属于同一类别
(2)当前属性集为空,或者是所有样本在所有属性的取值均相同,无法划分
(3)当前结点包含的样本集合为空
1.3分类原理
信息增益,它表示得知特征 A 的信息而使得样本集合不确定性减少的程度。数据集的信息熵公式如下:
表示集合 D 中属于第 k 类样本的样本子集。
针对某个特征 A,对于数据集 D 的条件熵 H(D|A) 为:
信息增益 = 信息熵 - 条件熵:
信息增益越大表示使用特征 A 来划分所获得的“纯度提升越大”
二.分类指标
2.1离散和连续属性
集美大学调查学生晚上回不回宿舍,通过(性别专业,毕业去向)这些离散属性和(学习成绩)这一连续属性对学生是否周末回宿舍进行分类。
2.2连续值处理
由于连续值不好直接用某个指标进行划分(例:有5组数据且成绩属性的值分别为(60,61,62,63,90),如果简单的以所有值进行划分如60那么得到的所有概率均为1/5。显然对于数据来说1/5的概率完全不合理,应该在60左右的概率要比较大。因此需要对连续值进行二值划分。
2.3连续值划分原理
- 首先将所有值进行排序,并求得相邻两位数的均值作为候选划分标准;
- 对每个划分标准求得经验条件熵;
- 计算根节点的信息熵与每个划分标准的信息增益;
- 选取最大增益对应的标准为划分标准,将低于标准的值置为0高于标准的值置为1。
三.代码实现
3.1创建数据集
def create_data():
datasets = [['男', '78', '计算机', '考研', '是'],
['男', '80', '师范', '考研', '是'],
['男', '79', '计算机', '就业', '否'],
['男', '79', '师范', '就业', '否'],
['男', '79', '财经', '考研', '是'],
['男', '83', '计算机', '考公', '否'],
['男', '77', '财经', '考研', '是'],
['男', '76', '师范', '就业', '否'],
['男', '75', '计算机', '考研', '否'],
['女', '76', '计算机', '考研', '是'],
['女', '79', '师范', '考研', '是'],
['女', '85', '计算机', '就业', '否'],
['女&