西瓜书第三章---线性模型学习笔记

1.线性模型的基本形式

  1. 定义:给定一个数据集D,其中的样本有d个属性,x_{i}是第i个属性的取值,所以线性模型可以通过这样一个组合来学得一个属性的线性组合的函数用来预测:

     

        写成向量形式就是f(x)=w^{T}x+b,在确定w和b之后,就可以得到最终的模型。

2.线性回归

一元线性回归(单个属性)

  1. 属性值的转换:如果离散属性的数值之间存在一种有序关系,即可以通过排序的方式找出数值之间的关系,那么可以直接将这种属性的数值直接转换为连续值,比如高矮胖瘦,资产总数等属性;若无法通过排序的方式找出数值关系,就需要将属性值转换为数值向量的形式,比如对瓜进行分类,“西瓜”,“南瓜”,“黄瓜”可以转化为(0,0,1),(0,1,0),(1,0,0)
  2. 参数w和b的求解方法:核心思想是使损失函数最小化

         具体求解方法,使均方误差最小化:

        使用的数学方法是最小二乘法,即试图找到一条直线,使全部样例到直线上的欧氏距离的和最小:

  •  先对w和b分别求导

 

  •  将上面两个式子等于0然后列方程组,进行求解,可得到:

 

 多元线性回归

  • 所要学的目标函数形式为:
  • 优化目标和一元类似,且数学方法也是最小二乘法

总结

 线性模型的结构简单,求解方式也很容易理解,而且它还有很多种的变化,比如下一章的逻辑回归模型

3.逻辑回归(书中叫对数几率回归)

  1. 原理:假设样本的真实值在指数尺度上面变化,那就可以将输出标记的对数作为线性模型的逼近目标:

         上式在形式上还是线性回归的样子,但是预测结果是一种输入空间到输出空间的非线性的映射

           激活函数(联系函数):激活函数g(x)是一种将预测值和真实值做逼近的函数,上面的lnx就是激活函数的一种,激 活函数的基本性质需要满足单调可微且总够光滑。所以逻辑回归做分类的原理就是找到一个合适的激活函数将真实值和预测值进行更加有效的联系

        2.逻辑回归激活函数的选择

  • 因为二分类的真实值只有0,1两种选项,所以目标就是寻找一个激活函数将线性回归所求得的值映射为0,1值,如下图所示

         根据对于激活函数单调可微且足够光滑的要求,选择对数几率函数为y=\frac{1}{1+e^{-z}},最终的图像效果如上图所示,逻辑回归就是在用线性模型的值来逼近对数几率ln\frac{y}{1-y}

        3.逻辑回归的优点

  •  不需要先假设数据的分布就能够对分类问题建模
  • 在预测到类别的同时还计算出了近似概率
  • 可以直接用数值优化算法来求解

总结 

逻辑回归有诸多的好处且建模过程简单,具体优化过程见西瓜书第三章

4.线性判别分析(LDA)

  • 核心思想:给定一个训练集,使用一些方法将训练集中的数据投影到直线上面去,具体任务就是让属于同类的样本点的投影之间的距离尽可能的近,不同类样本点的投影之间的尽可能远,如下图:

  •  定义:两类样本的中心在直线上的投影为w^{T}\mu _{0}w^{T}\mu _{1},两类样本点的协方差为w^{T}\sum _{0}w

w^{T}\sum _{1}w,类内散度矩阵和类间散度矩阵

 

  • 优化目标:使同类之间的协方差尽可能小,使不同类之间的投影点尽可能远离 ,于是得到了LDA的优化目标,写成:

         或者

  • 计算方法:利用拉格朗日算子法,可以求解w的值 

 5.多分类学习

  1. 主要思想:将多分类转换为二分类 ,给每个二分类任务训练出一个分类器,然后用这些分类器同时进行预测,比较各分类器的预测值准确度。其中主要数据集拆分方法有一对多,一对一,多对多等
  2. 一对一和一对多的思想:一对一是将N个种类进行两两配对,然后阐述N(N-1)/2个二分类任务;一对多是将一个类作为正,其他的作为负,训练出N个分类器,具体的实现流程如下图:

  3.  一对一和一对多的优缺点:一对一需要训练更多的分类器,会消耗更多的存储开销,但是一对一在训练的时候每次只使用两类数据,而一对多每次训练都需要使用全部数据,这也会导致大量的时间开销,所以在类别较多时,一对一的时间开销往往更小

6.类别不平衡问题 

  • 主要指的是在进行分类任务时,不同类别的训练样例数目有很大差别的情况,比如1000个样本,有999个是正的,只有一个是反的,那么这个学得模型无法预测出反例,就失去了预测价值
  • 但是这种现象可以用在异常检测之中,比如通过大量的好样本来训练一个检测飞机发动机好坏的模型,这样它可以学得很多好样本的特征 ,更偏向于好样本,所以如果输入一个坏的测试样例,那么这个模型就会得到一个异常的预测结果,这时候就可以判定飞机发动机有问题
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 线性判别分析(Linear Discriminant Analysis,简称LDA)是一种常用的模式识别和机器学习算法,它通过将样本投影到一个低维度线性空间中,以实现最大化类间距离并最小化类内距离的目标,从而实现分类任务。 要实现线性判别分析,可以按照以下步骤进行: 步骤1:导入所需的库和模块,如numpy、pandas等。 步骤2:读取西瓜数据集3.0,并将其分为特征和标签两部分。 步骤3:对每一类样本计算其均值向量。 步骤4:计算类内散度矩阵Sw和类间散度矩阵Sb。 步骤5:计算Sw的逆矩阵与Sb的乘积。 步骤6:对Sb*Sw的特征值和特征向量进行排序。 步骤7:选择最大的k个特征值对应的特征向量作为投影向量。 步骤8:将样本投影到投影向量所张成的低维空间中。 步骤9:利用投影后的样本进行新的分类任务。 以下是使用Python实现线性判别分析的代码示例: ```python import numpy as np import pandas as pd # 步骤2:读取西瓜数据集3.0 watermelon_data = pd.read_csv('watermelon_data.csv') # 假设数据集保存为watermelon_data.csv features = watermelon_data.iloc[:, :-1].values # 特征 labels = watermelon_data.iloc[:, -1].values # 标签 # 步骤3:计算均值向量 mean_vectors = [] # 存储每个类别的均值向量 for label in np.unique(labels): mean_vectors.append(np.mean(features[labels == label], axis=0)) # 步骤4:计算类内散度矩阵Sw和类间散度矩阵Sb Sb = np.zeros((features.shape[1], features.shape[1])) # 类间散度矩阵 Sw = np.zeros((features.shape[1], features.shape[1])) # 类内散度矩阵 overall_mean = np.mean(features, axis=0) # 全局均值向量 for label, mean_vector in zip(np.unique(labels), mean_vectors): n = features[labels == label].shape[0] # 类别样本数量 class_scatter_matrix = np.cov(features[labels == label].T, bias=True) # 类内散度矩阵 Sw += class_scatter_matrix mean_diff = (mean_vector - overall_mean).reshape(features.shape[1], 1) Sb += n * mean_diff.dot(mean_diff.T) # 步骤5:计算Sw的逆矩阵与Sb的乘积 eigen_values, eigen_vectors = np.linalg.eig(np.linalg.inv(Sw).dot(Sb)) # 步骤6:对特征值和特征向量进行排序 idx = np.argsort(np.abs(eigen_values))[::-1] eigen_values = eigen_values[idx] eigen_vectors = eigen_vectors[:, idx] # 步骤7:选择投影向量 k = 2 # 假设选择两个投影向量 projection_matrix = eigen_vectors[:, :k] # 步骤8:样本投影 projected_data = features.dot(projection_matrix) # 步骤9:进行新的分类任务 # 这一步根据具体需求选择分类算法进行分类 # 例如,使用K近邻算法进行分类 from sklearn.neighbors import KNeighborsClassifier X_train, X_test, y_train, y_test = train_test_split(projected_data, labels, test_size=0.3, random_state=42) knn = KNeighborsClassifier() knn.fit(X_train, y_train) predictions = knn.predict(X_test) ``` 以上代码示例实现了线性判别分析,并通过投影将样本从原始高维空间投影到仅有两个特征的低维空间中,最后使用K近邻算法进行分类任务。根据具体需求,可以选择其他分类算法进行分类任务。 ### 回答2: 线性判别分析(Linear Discriminant Analysis,LDA)是一种经典的机器学习算法,用于降维和分类任务。它基于统计学原理,通过最大化类之间的可分离性和最小化类内的可分离性,找到一个最佳的投影方向,将数据映射到一维或更低维的空间。 下面是使用Python实现线性判别分析,并应用于西瓜数据集3.0的步骤: 1. 载入所需的Python库,例如`numpy`用于数组操作,`pandas`用于数据处理,`matplotlib`用于数据可视化。 ``` import numpy as np import pandas as pd import matplotlib.pyplot as plt ``` 2. 载入西瓜数据集3.0,可以使用`pandas`的`read_csv`函数读取csv文件,并将特征和标签分别存储到矩阵`X`和向量`y`中。 ``` data = pd.read_csv('watermelon_dataset.csv') X = data.iloc[:, 1:-1].values y = data.iloc[:, -1].values ``` 3. 计算各类别的均值向量和类内散度矩阵。 ``` def calculate_mean_vectors(X, y): class_labels = np.unique(y) mean_vectors = [] for label in class_labels: mean_vectors.append(np.mean(X[y==label], axis=0)) return mean_vectors def calculate_within_class_scatter_matrix(X, y): class_labels = np.unique(y) num_features = X.shape[1] S_W = np.zeros((num_features, num_features)) mean_vectors = calculate_mean_vectors(X, y) for label, mean_vector in zip(class_labels, mean_vectors): class_scatter_matrix = np.zeros((num_features, num_features)) for sample in X[y==label]: sample, mean_vector = sample.reshape(num_features, 1), mean_vector.reshape(num_features, 1) class_scatter_matrix += (sample - mean_vector).dot((sample - mean_vector).T) S_W += class_scatter_matrix return S_W ``` 4. 计算类间散度矩阵。 ``` def calculate_between_class_scatter_matrix(X, y): class_labels = np.unique(y) num_features = X.shape[1] overall_mean = np.mean(X, axis=0).reshape(num_features, 1) S_B = np.zeros((num_features, num_features)) mean_vectors = calculate_mean_vectors(X, y) for i, mean_vector in enumerate(mean_vectors): n = X[y==class_labels[i]].shape[0] mean_vector = mean_vector.reshape(num_features, 1) S_B += n * (mean_vector - overall_mean).dot((mean_vector - overall_mean).T) return S_B ``` 5. 计算特征向量和特征值,并选择投影方向。 ``` def select_projection_direction(X, y, num_dimensions): S_W = calculate_within_class_scatter_matrix(X, y) S_B = calculate_between_class_scatter_matrix(X, y) eigen_values, eigen_vectors = np.linalg.eig(np.linalg.inv(S_W).dot(S_B)) eigen_pairs = [(np.abs(eigen_values[i]), eigen_vectors[:,i]) for i in range(len(eigen_values))] eigen_pairs.sort(key=lambda x: x[0], reverse=True) projection_matrix = np.hstack([eigen_pairs[i][1].reshape(num_dimensions, 1) for i in range(num_dimensions)]) return projection_matrix ``` 6. 将数据映射到选择的投影方向,观察分类结果。 ``` def project_data(X, projection_matrix): return X.dot(projection_matrix) projection_matrix = select_projection_direction(X, y, 1) X_prime = project_data(X, projection_matrix) plt.scatter(X_prime[y=='是'], np.zeros(len(X_prime[y=='是'])), color='r', label='是') plt.scatter(X_prime[y=='否'], np.zeros(len(X_prime[y=='否'])), color='b', label='否') plt.xlabel('投影向量') plt.legend() plt.show() ``` 通过以上步骤,我们就可以实现线性判别分析,并且使用选择的投影方向将西瓜数据集3.0映射到一维空间。可视化结果显示了在投影空间中的分类结果,红色点表示‘是’类别,蓝色点表示‘否’类别。 ### 回答3: 编程实现线性判别分析是一种常用的降维和分类算法,可以有效地提取高维数据的主要特征,并进行分类预测。下面给出一个简单的 Python 实现示例,使用西瓜数据集3.0进行线性判别分析。 首先,我们需要导入必要的库和模块: ``` import numpy as np import pandas as pd from sklearn.discriminant_analysis import LinearDiscriminantAnalysis ``` 接下来,读取西瓜数据集3.0,并对其进行预处理: ``` data = pd.read_csv("watermelon_3.csv") X = data.iloc[:, 1:3].values # 特征矩阵 y = data.iloc[:, -1].values # 标签向量 ``` 然后,我们使用 LinearDiscriminantAnalysis 类进行线性判别分析: ``` lda = LinearDiscriminantAnalysis(n_components=1) # 指定降维后的维度为1 X_lda = lda.fit_transform(X, y) # 进行降维 ``` 最后,我们可以输出降维后的特征矩阵,并查看分类结果: ``` print("降维后的特征矩阵:") print(X_lda) print("预测分类结果:") pred = lda.predict(X) for i in range(len(X)): print(f"样本 {i+1}: 预测为 {pred[i]}") ``` 这样,我们就完成了使用线性判别分析对西瓜数据集3.0进行降维和分类的编程实现。当然,具体的实现还会涉及到一些数据预处理、模型评估等其他步骤,但以上示例可以作为一个简单的起点。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值