浦语提示词工程实践
首先还是创建我们的开发机
具体流程略
环境配置
# 创建虚拟环境
conda create -n langgpt python=3.10 -y
然后激活我们的虚拟环境
conda activate langgpt
然后,我们需要安装一点必要的Python的第三方包
# 安装一些必要的库
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
# 安装其他依赖
pip install transformers==4.43.3
pip install streamlit==1.37.0
pip install huggingface_hub==0.24.3
pip install openai==1.37.1
pip install lmdeploy==0.5.2
创建项目路径
## 创建路径
mkdir langgpt
## 进入项目路径
cd langgpt
安装必须的软件
apt-get install tmux
然后,模型部署
如果使用intern-studio
开发机,可以直接在路径/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b
下找到模型
如果不使用开发机,可以从huggingface上获取模型,地址为:https://huggingface.co/internlm/internlm2-chat-1_8b
也可以使用下载脚本
from huggingface_hub import login, snapshot_download
import os
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
login(token=“your_access_token")
models = ["internlm/internlm2-chat-1_8b"]
for model in models:
try:
snapshot_download(repo_id=model,local_dir="langgpt/internlm2-chat-1_8b")
except Exception as e:
print(e)
pass
部署模型为OpenAI server
接下来,我们要把进程放在持续后台上
执行下bash
tmux new -t langgpt
创建完成后,运行下面的命令进入新的命令窗口(首次创建自动进入,之后需要连接):
tmux a -t langgpt
使用LMDeploy进行部署,参考如下命令:
CUDA_VISIBLE_DEVICES=0 lmdeploy serve api_server /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b --server-port 23333 --api-keys internlm2
图形化界面调用
InternLM部署完成后,可利用提供的chat_ui.py
创建图形化界面,在实战营项目的tools项目中。
git clone https://github.com/InternLM/Tutorial.git
再进入项目路径
cd Tutorial/tools
然后运行项目
python -m streamlit run chat_ui.py