这里写自定义目录标题
如何解决tensorflow版本不同而产生的module报错问题?
在进行吴老板的编程作业的时候,由于自己安装的是tensorflow2.0以上的版本,在运行作业的时候,需要将tensorflow2.x变更成1.x版本,(ps:将2.x改成1.x的代码
tensorflow2.0以上版本运用1.0版本时,在import tensorflow as tf后加上
import tensorflow.compat.v1 as tf #V1disableV2,仅使用V1
tf.disable_v2_behavior())
但是这样的话,在后面运行其他需要2.x版本才有的函数的时候还是会module报错。
这时候需要到tensorflow的官网上https://tensorflow.google.cn/,我进的是谷歌中文版。
随后点击API中的Version找到自己的版本,我的版本是2.6
选择r2.6
进入到Python下,在左边的搜索栏中输入报错的函数名,我这里以reduce_mean()为例,出现很多个匹配项,点击tf.compat,找到V1版本就是tf.1.x版本,点击reduce_mean()
这时候我们进入到如下页面
点击View aliases即可看到“用于迁移的compat别名”Compat aliases for migration
只需要将**tf.reduce_mean()改成tf.compat.v1.math.reduce_mean()**即可。
好啦!大功告成,仅以此文作为自己的复习笔记。欢迎评论区交流指正!
转载需注明文章链接,谢谢观看!