一.算法的主流研究方向
本人算是初学者开始学算法,本着磨刀不误砍柴工的理念,个人觉得算法的入门首先就是要弄清楚现在算法的主流研究方向和算法的主要分类方法,对基础性的概念弄清楚可以给后期的学习打下坚实的基础。
废话不多说,关于算法的主流研究方向我们直接看下图:
1.AI算法
AI即人工智能是一组算法,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
AI算法可使计算机从以前的结果中学习并获得信息的更新,而无需人工干预。简单地向其馈送大量结构化数据以完成任务,而无需编程如何执行此任务。
根据获得的数据,人工智能将通过考虑多种因素来建立假设并提出可能的新结果,这将帮助他们做出比人类更好的决策。
AI人工智能的算法有很多,比如决策树、粒子群算法、随机森林算法、逻辑回归、SVM、遗传算法、朴素贝叶斯、K最近邻算法、贪婪算法、K均值算法、Adaboost算法、蚁群算法、神经网络、马尔可夫等等。
2.Machine learning(机器学习)
机器学习是一种概念:不需要写任何与问题有关的特定代码,泛型算法(Generic Algorithms)[1]就能告诉你一些关于你数据的有趣结论。不用编码,你将数据输入泛型算法当中,它就会在数据的基础上建立出它自己的逻辑。
机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是