.shape 和 .size的区别

在 Python 中,尤其是使用 numpytorch 库进行数组和张量操作时,.shape.size() 是两个非常常见的方法。虽然它们有时可以互换使用,但它们确实有一些细微的区别。

.shape 属性

  • 类型.shape 是一个属性。
  • 返回值:返回一个包含数组或张量每个维度大小的元组。
  • 示例
    import numpy as np
    import torch
    
    np_array = np.array([[1, 2, 3], [4, 5, 6]])
    torch_tensor = torch.tensor([[1, 2, 3], [4, 5, 6]])
    
    print(np_array.shape)       # 输出: (2, 3)
    print(torch_tensor.shape)   # 输出: torch.Size([2, 3])
    

.size() 方法

  • 类型.size() 是一个方法。
  • 返回值:在 numpy 中,.size() 返回数组中的元素总数。在 torch 中,.size() 返回一个包含张量每个维度大小的对象,这个对象行为类似于元组。
  • 示例
    import numpy as np
    import torch
    
    np_array = np.array([[1, 2, 3], [4, 5, 6]])
    torch_tensor = torch.tensor([[1, 2, 3], [4, 5, 6]])
    
    print(np_array.size)        # 输出: 6 (元素总数)
    print(torch_tensor.size())  # 输出: torch.Size([2, 3])
    

总结

  • numpy

    • array.shape 返回数组的形状(一个元组)。
    • array.size 返回数组中元素的总数。
  • torch

    • tensor.shapetensor.size() 都返回张量的形状(torch.Size 对象,行为类似于元组)。
    • tensor.numel() 是一个与 numpy 中的 array.size 类似的方法,用于返回张量中元素的总数。

示例代码

以下是一个完整的示例,展示了它们的不同用法:

import numpy as np
import torch

# Numpy 数组示例
np_array = np.array([[1, 2, 3], [4, 5, 6]])
print("Numpy array shape:", np_array.shape)  # 输出: (2, 3)
print("Numpy array size:", np_array.size)    # 输出: 6 (元素总数)

# Torch 张量示例
torch_tensor = torch.tensor([[1, 2, 3], [4, 5, 6]])
print("Torch tensor shape:", torch_tensor.shape)     # 输出: torch.Size([2, 3])
print("Torch tensor size():", torch_tensor.size())   # 输出: torch.Size([2, 3])
print("Torch tensor numel():", torch_tensor.numel()) # 输出: 6 (元素总数)

希望这能帮助你更好地理解 .shape.size()numpytorch 中的区别!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值