首次发布于CSDN,禁止转载!(汉密士2025)
文章目录
十七大数学领域脉络
一、代数学领域(52)
- 集合论
- 矩阵与行列式
- 多项式与代数方程
- 域与Galois理论
- 线性空间
- 张量积与外积
- 环论
- 代数
- 模论
- 代数表示论
- 同调代数
- Hopf代数
- 交换环与Noether环
- 范畴与函子
- 不变量理论
- 幂级数环
- 唯一分解整环
- 交换环的同调理论
- 优秀(excellent)环
- Hensel环与逼近定理
- 理想的胎紧闭包(tight closure)
- 二次型
- Clifford代数
- 微分环
- Witt向量
- 赋值论
- 阿代尔与伊代尔
- Cayley代数
- Jordan代数
- 格论
- Boole代数
- 群论
- 有限群
- 有限单群
- 结晶体群
- 典型群
- 拓扑群
- 紧群
- 李群
- 李代数
- 代数群
- 对称空间
- 齐性空间上的群作用
- 不连续群
- 表示论
- 模表示
- 酉表示
- 无限维表示
- 群作用与不变量
- D-模
- 量子群
- 无限维Lie代数
二、数论领域(21)
- 初等数论
- 连分数
- 数论函数
- 堆垒数论
- 素数的分布
- 数的几何与数论中的逼近
- 超越数
- 丢番图方程
- 二次域的数论
- 代数数域的数论
- 局部域
- 类域论
- 岩泽理论
- 代数K理论
- 算术几何
- 费马大定理
- 数域上的代数群
- 自守形式
- 志村簇
- zeta函数
- 准齐性向量空间
三、代数几何学领域(19)
- 代数曲线
- 代数曲面与复解析曲面
- 代数簇
- 凝聚层及其上同调理论
- 有理映射与奇点
- 除子理论
- 闭链与周环
- 代数空间与形式概形
- 极化簇
- 代数簇的拓扑与比较定理
- 代数向量丛
- Hodge理论
- 阿贝尔簇
- 有理簇与Fano簇
- 双有理几何
- 环面簇
- 相交理论
- 奇点理论
- 模空间理论
四、几何学领域(7)
- 欧氏几何
- 非欧几何
- 射影几何
- 解析几何
- 仿射几何
- 共形几何
- 组合几何
五、微分几何领域(23)
- 流形论
- 黎曼流形
- 联络论
- 张量与旋量
- 整体黎曼几何
- 齐性空间的微分几何
- G-结构与等价问题
- 复流形
- 调和积分
- 曲线与曲面的微分几何
- 子流形的微分几何
- 极小子流形
- 几何测度论
- 调和映射
- Morse理论
- 仿射微分几何
- Finsler空间
- 积分几何
- 谱几何
- 刚性与几何群论
- 辛几何与切触几何
- 模空间与偏微分方程
- 一些新的几何理论(如Twistor空间、超Kahler几何、ADHM构造、Galabi-Yau流形等)
六、拓扑学领域(30)
- 拓扑空间
- 度量空间
- 维数理论
- 一致空间
- 基本群
- 覆盖空间
- 映射度
- 复形
- 同调论
- 不动点定理
- 同伦论
- 纤维丛
- 障碍理论
- 示性类
- 拓扑K理论
- 纽结理论
- 变换群
- 层论
- 可微映射的奇点
- 叶状结构
- 动力系统
- 低维动力系统
- 双曲动力系统
- 保守动力系统
- 动力系统中的分歧
- 流形的拓扑
- 指标定理
- 3维流形
- 4维流形
- 几何拓扑
七、分析学领域(29)
- 极限论
- 凸分析
- 有界变差函数
- 微分学
- 算子演算
- 测度论
- 积分理论
- 不变测度
- 长度和面积
- 分形
- 级数与渐近级数
- 多项式逼近
- 正交函数系
- 傅立叶级数
- 傅立叶变换
- 小波
- 调和分析与实分析
- 殆周期函数
- 积分变换
- 位势论
- 调和函数与上(下)调和函数
- Dirichlet问题
- 变分法
- 积分变换
- 位势论
- 调和函数与上(下)调和函数
- Dirichlet问题
- 变分法
- Plateau问题
八、复分析领域(24)
- 全纯函数
- 幂级数
- 全纯函数族
- 全纯函数最大值原理
- 解析函数边界性质
- 单叶函数
- 值分布理论
- 复逼近论
- 黎曼面
- 黎曼面上的分析
- 复动力系统
- 共形映射
- 拟共形映射
- Teichmuller空间
- Klein群
- 多变量解析函数
- 解析空间
- 复数函数的偏导数方程(?)
- 全纯映射
- 多重下调和函数
- CR﹣流形
- 核函数
- Siegel区域
- 周期积分
九、泛函分析领域(19)
- Hilbert空间
- Banach空间
- 有序线性空间
- 拓扑线性空间
- 函数空间
- 广义函数与超函数
- 向量值积分
- 线性算子
- 紧算子与核型算子
- 插值空间
- 算子的谱分析
- 算子不等式
- 线性算子的摄动
- 算子半群和发展方程
- Banach代数
- C ∗ C^{*} C∗ 代数
- 函数代数
- von Neumann代数
- 非线性泛函分析
十、微分方程领域 (32)
- 常微分方程的初值问题和边值问题
- 线性常微分方程
- 线性常微分方程的局部理论
- 线性常微分方程的整体理论
- 非线性常微分方程的局部理论
- 非线性常微分方程的整体理论
- Painleve方程
- 非线性振动
- 非线性问题
- 常微分方程解的稳定性
- 积分不变量
- 差分方程
- 泛函微分方程
- 全微分方程
- 偏微分方程及其解法
- 亚椭圆性与可解性
- 偏微分方程的初值问题
- 复数域中的偏微分方程
- 一阶偏微分方程
- Monge-Ampere方程
- 椭圆型偏微分方程
- 双曲型偏微分方程
- 抛物型偏微分方程
- 混合型偏微分方程
- 偏微分方程理论中的不等式
- Green函数与Green算子
- 积分方程
- 积分微分方程
- 特殊微分方程
- 微局部分析与拟微分算子
- 特殊函数
- 椭圆函数
十一、计算数学领域(10)
- 线性方程组的数值解法
- 非线性方程组的数值解法
- 特征值的数值计算法
- 数值积分法
- 常微分方程的数值解法
- 偏微分方程的数值解法
- 有限差分法
- 有限元方法
- 函数值计算法
- 自我校正(self-validating)方法
十二、应用分析领域(10)
- 数学模型
- 反应扩散方程
- 自由边界问题
- 变分分析
- 流体力学方程
- 守恒定律
- 非线性波动方程与非线性色散方程
- 散射理论
- 反问题
- 黏性解
十三、概率论领域(17)
- 概率论
- 概率测度
- 随机过程
- 极限定理
- Markov过程
- Markov链与Brown运动
- Levy过程
- 鞅论
- 扩散过程
- 随机微分方程
- Malliavin随机分析
- 测度值过程
- Gauss过程
- 平稳过程
- 遍历理论
- 随机控制与随机滤波
- 统计物理中的概率方法
十四、统计数学领域(13)
- 统计模型与统计推断
- 统计量与样本分布
- 统计估计
- 假设检验
- 多元分析
- 鲁棒与非参数方法
- 试验设计
- 抽样方法
- 保险数学
- 时间序列分析
- 随机过程的统计推断
- 统计计算
- 信息几何
十五、离散数学与组合论领域(7)
- 图论
- 计数组合学
- 拟阵
- 设计理论
- 离散几何
- 极值集合论
- 代数组合学
十六、信息科学中的数学领域(8)
- 形式语言与自动机
- 计算复杂性理论
- 信息论
- 编码理论
- 密码学
- 计算机代数
- 计算几何
- 随机数与MonteCarlo方法
十七、最优化理论领域(15)
- 线性规划
- 非线性规划
- 半定规划与整体最优化
- 网络流
- 离散凸分析
- 整数规划
- 组合最优化
- 动态规划
- 随机规划
- 对策论
- 互补性问题
- 控制论
- 运筹学
- 证券投资(portfolio)理论
- Markov决策过程
《普林斯顿应用数学指南》(The Princeton Companion to Applied Mathematics)
(一)应用数学引言(Introduction to Applied Mathematics)
什么是应用数学?
应用数学的语言
解决问题的方法
算法
应用数学研究的目标
应用数学的发展历史
(二)基本概念(Concepts)
渐近性
边界层
混沌与遍历性
复杂系统
共形映射
守恒定律
控制
凸性
量纲分析与缩放
快速傅里叶变换
有限差分
有限元法
浮点运算
矩阵函数
函数空间
图论
齐次化
混杂系统
积分变换与卷积
区间分析
不变量与守恒定律
若尔当标准形
Krylov子空间
水平集方法
Markov链
模型降阶
多尺度建模
非线性方程组与牛顿法
正交多项式
激波
奇点
奇异值分解
张量与微分流形
非确定性量化
变分原理
波动现象
(三)应用数学中的基本方程、定律与函数(Equations,Laws,and Functions of Applied Mathematics)
Benford定律
Bessel函数
黑洞方程
Burger方程
Cahn-Hilliard方程
Cauchy-Riemann方程
δ函数与广义函数
扩散方程
Dirac方程
Einstein场方程
Euler方程
Euler-Lagrange方程
Γ函数
Ginzburg-Landau方程
Hooke定律
Korteweg-de Vries方程
Lambert W函数
Laplace方程
逻辑斯谛方程
Lorenz方程
Mathieu函数
Maxwell方程组
Navier-Stokes方程
Painlevé方程
Riccati方程
Schrödinger方程
浅水方程
Sylvester方程与Lyapunov方程
薄膜方程
Tricomi方程
波动方程
(四)涉及到应用数学的分支学科(Areas of Applied Mathematics)
复分析
常微分方程
偏微分方程
积分方程
摄动理论与渐近性
变分法
特殊函数
谱理论
逼近论
数值线性代数与矩阵分析
连续性最优化(线性与非线性规划)
常微分方程数值解
偏微分方程数值解
随机分析的应用
反问题
计算科学
数据挖掘与分析
网络分析
经典力学
动力系统
分歧理论
应用数学中的对称性
量子力学
随机矩阵理论
动理学理论
连续介质力学
模式形成
流体动力学
磁流体动力学
地球系统动力学
有效媒介理论
固体力学
软物质
控制论
信号处理
信息论
应用组合学与图论
组合最优化
代数几何
广义相对论与宇宙学
(五)数学建模(Modeling)
自适应的数学
运动
惯性
数学生物力学
数学生理学
心脏模型
化学反应
发散级数
金融数学
投资组合理论
应用数学中的贝叶斯推断
一个对称框架及其多重应用
颗粒流
现代光学
数值相对论
传染病的传播
海冰的数学
数值气象预报
海啸建模
激波
湍流
(六)常见问题的举例(Example Problems)
隐身
气泡
泡沫
倒立摆
昆虫的飞行
高尔夫球的飞行
自动微分法
大分子的打结与连接
网页的排名
搜索一个图
初等函数的求值
随机数的产生
节能建筑控制中传感器的最优位置
机器人
非光滑动力学及其应用
从N体问题到天文学和暗物质
N体问题与快速多极算法
旅行销售员问题
(七)应用的领域(Application Areas)
飞机噪音
几何处理与建模的一种混合符号数值方法
区间分析法的计算机辅助证明
Max-Plus代数的应用
演变中的社会网络、态度、信仰和反恐
芯片设计
色彩空间和数字成像
数学图像处理
医疗成像
压缩传感
程序设计语言
高性能计算
可视化
固体物理中的电子结构计算
火焰传播
运用Green定理来对地球成像
雷达成像
妊娠检测试剂盒的建模
机场行李X射线断层扫描检查
数理经济学
数理神经科学
系统生物学
通信网络
文本挖掘
表决制度
(八)关于应用数学的一些看法(Final Perspectives)
数学写作
怎样阅读和理解一篇数学论文
如何写一本大众化的数学书
工作流程
数学科学中的可重复性研究
实验应用数学
应用数学的教学
媒体中的数学:数学在大众文化中的表现
数学与政策
P.S.除了《普林斯顿数学指南》三卷本以外,毕业后的七年多后我又看到一本《普林斯顿应用数学指南》。
网上错误的数学登神路线与修正版本(2025.4.10)
这两张数学线路图来自小红书用户“Raphael朱光照”的小红书笔记。图1为网上流传的错误版本,图2为他的修正版本。在笔记中他个人作了一段文字注释:“图一谬误很多;图二是我的修正版本(部分),涉及到李群、李代数、代数群的,我不熟悉所以没写;涉及数论、分析,评论区可以补充一下。”
图2文字版:
- 第一阶段:微积分,线性代数(Jordan分解),一般拓扑
- 第二阶段:群论,一般环论,module理论,多变量函数(inverse function)
- 第三阶段:Galois理论,Lebesgue积分/微分,单复变函数,微分几何(流形)
- 第四阶段:交换代数,类域论,同伦论,奇异同调理论,泛函分析(线性算子)
- 第五阶段:代数几何(代数簇),复几何(多复变函数),概型几何,上同调理论(Steenrod operation),代数K理论,傅立叶分析
- 第六阶段:相交理论(Grothendieck-Riemann-Roch),Etale上同调,Galois上同调,奇异积分理论
- 第七阶段:Motivic 上同调/同伦论、远阿贝尔几何
- 第八阶段:Langlands Program(朗兰兹纲领)
我个人又再评论区看到一段对话,说本科纯数毕业学到代数拓扑,水平大致相当于第4阶段,后面从第5阶段开始就没接触过了。
人的年龄越来越大,越来越认为教育不是别的,它是筛选,筛选呀!唉……
少许物理领域
- 力学
- 天体力学
- 宇宙物理学
- 三体问题
- 流体力学
- 等离子物理学
- 湍流
- 复杂系统
- 相变
- 振动与波动
- 几何光学
- 电磁学
- 网络与回路
- 热力学
- 统计力学
- 相对论
- 统一场论
- 量子力学
- Lorentz群
- Racah代数
- 二次量子化
- 场论
- S矩阵
- Feynman积分
- 基本粒子论
- 重正化群
- 可解模型
- 孤立子
- 共形场论
无奈
为什么要让我当初一个退学并且已经蹉跎七年多的人知道这些呢?由于早年基础教育的不足,我至今还在补数学基础知识,特别是代数领域的知识。(目前《24册数学基础知识丛书系列》我已经看到第十册《三角函数》,剩余十四册。)但就像我在之前的文章《微积分[2]|专升本高数习题83道》里写的那样,看完这24册书不够呀,不够呀,这还不够呀!!!什么叫“具备扎实的数学基础”???你要有大学本科的数学知识储备(不仅仅只会“数学分析”与“高等代数”),还要具备大学里普通物理、经典力学的知识(强度再大一点可再多学几门四大力学的课程),这样子也许才算具备扎实的数理基础吧……这样才是一个数学物理学习者吧,另外还必须学习计算机工具软件,如 MATLAB 。
七年多了,七年多了,一次高中加一次大学,一次大学本科加一个大学硕士,一次读一个博士学位还有多的时间……我浑浑噩噩的实在太久了,虚度的光阴抹杀了人生许多可能性,也让我这几年的人生跌倒了谷底……
所有人都是骨头架子,人生三万多天,好人生后半段的三分之二里,我还能慢慢去补,去补它……
更新时间记录
- 《普林斯顿应用数学指南》目录;「2024.12.20 15:38」
- “二、数论领域(21)”;「2024.12.20 15:51」
- “五、微分几何领域(23)”;「2024.12.20 16:09」
- “八、复分析领域(24)”;「2024.12.20 16:31」
- “少许物理领域”;「2024.12.20 17:02」
- “无奈”。「2024.12.20 17:23」
- 增加“错误的数学登神路线与修正版本(2025.4.10)”;「2025.4.11 11:03」