数值计算的误差
误差的来源
- 模型误差
- 观测误差
- 截断误差
- 舍入误差
其中模型误差和观测误差是不可避免的,不属于数值分析考虑范畴
截断误差是指数学模型(数值计算方法)与精确解直接存在的误差
舍入误差是指受计算机器字长限制导致的误差,由于计算机每个单元存储位数有限,且是按二级制存储在计算机中,没有办法存储所有的数字
误差的分类
绝对误差:
e ∗ = x ∗ − x e^*=x^*-x e∗=x∗−x
其中 x x x 代表准确值, x ∗ x^* x∗表示近似值
当 e ∗ = x ∗ − x ≥ 0 e^*=x^*-x\ge0 e∗=x∗−x≥0 说明近似值大于准确指是一个强近似值
当 e ∗ = x ∗ − x ≤ 0 e^*=x^*-x\le0 e∗=x∗−x≤0 说明近似值小于准确指是一个若近似值
相对误差:
e r ∗ = e ∗ x ∗ e_r^*=\frac{e^*}{x^*} er∗=x∗e∗
相对误差更能表示一种误差成都
有效数字
若近似值与绝对值之间的误差,是某一个单位的 1 2 \frac{1}{2} 21,从第一个非0数字开始到这个位数共有n个位,那么就说近似值具有n位有效数字
计算公式: